880 resultados para SODIUM-CHANNELS
Resumo:
We have isolated a novel family of insect-selective neurotoxins that appear to be the most potent blockers of insect voltage-gated calcium channels reported to date. These toxins display exceptional phylogenetic specificity, with at least a 10,000-fold preference for insect versus vertebrate calcium channels. The structure of one of the toxins reveals a highly structured, disulfide-rich core and a structurally disordered C-terminal extension that is essential for channel blocking activity. Weak structural/functional homology with omega -agatoxin-IVA/B, the prototypic inhibitor of vertebrate P-type calcium channels, suggests that these two toxin families might share a similar mechanism of action despite their vastly different phylogenetic specificities.
Resumo:
With the exception of the sodium D-lines, recent calculations of line broadening cross sections for several multiplets of sodium by Leininger et al (Leininger T, Gadea F X and Dickinson A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 1805) are in substantial disagreement with cross sections interpolated from the tables of Anstee and O'Mara (Anstee and O'Mara 1995 Mon. Not. R. Astron. Soc. 276 859) and Barklem and O'Mara (Barklem P S and O'Mara B J 1997 Mon. Not. R. Astron. Soc. 290 102). The discrepancy is as large as a factor of 3 for the 3p-4d multiplet. The two theories are tested by using the results of each to synthesize lines in the solar spectrum. It is found that generally the data from the theory of Anstee, Barklem and O'Mara produce the best match to the observed solar spectrum. It is found, using a simple model for reflection of the optical electron by the potential barrier between the two atoms, that the reflection coefficient is too large for avoided crossings with the upper states of subordinate lines to contribute to line broadening, supporting the neglect of avoided ionic crossings by Anstee, Barklem and O'Mara for these lines. The large discrepancies between the two sets of calculations is a result of an approximate treatment of avoided ionic crossings for these lines by Leininger et al (Leininger T, Gadea F X and Dickinson A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 1805).
Resumo:
The influence of sodium (Na) on nucleation and growth of the Al-Si eutectic in a commercial hypoeutectic Al-Si-Cu-Mg foundry alloy has been investigated. The microstructural evolution during eutectic solidification was studied by a quenching technique. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites by EBSD, the eutectic solidification mode could be determined. The results show that the eutectic solidification starts near the mould wall and evolves with front growth opposite the thermal gradient on a macro-scale, and on a micro-scale with independent heterogeneous nucleation of eutectic grains in interdendritic spaces. Na-modified alloys therefore behave significantly differently from those modified by other elemental additions.
Resumo:
This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alpha beta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alpha beta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alpha beta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin las an allosterically acting 'competitive' antagonist) binds to this residue.
Resumo:
1. The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. 2. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (P-X/P-Cs) ranging from 1. 11 to 0.86. 3. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. 4, The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. 5. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X(2) and/or anti-P2X(4) but not anti-P2X(1) antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X(2) and P2X(4) receptor subtypes expressed in rat submandibular neurones. 6. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells.
Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons
Resumo:
The properties of single Ca2+-activated K+ (BK) channels in neonatal rat intracardiac neurons were investigated using the patch-clamp recording technique. In symmetrical 140 mM K+, the single-channel slope conductance was linear in the voltage range -60/+60 mV. and was 207+/-19 pS. Na+ ions were not measurably permeant through the open channel. Channel activity increased with the cytoplasmic free Ca2+ concentration ([Ca2+],) with a Hill plot giving a half-saturating [Ca2+] (K-0.5) of 1.35 muM and slope of congruent to3. The BK channel was inhibited reversibly by external tetraethylammonium (TEA) ions, charybdotoxin, and quinine and was resistant to block by 4-aminopyridine and apamin. Ionomycin (1-10 muM) increased BK channel activity in the cell-attached recording configuration. The resting activity was consistent with a [Ca2+](i)
Resumo:
The placenta must allow the passage of iodide from the maternal to the fetal circulation for synthesis of thyroxine by the fetal thyroid. The thyroid sodium iodide symporter (NIS) was cloned in 1996 and, although widely distributed among epithelial tissues, early studies failed to detect it in placenta. We demonstrated NIS mRNA in human placenta and in the human choriocarcinoma cell line, JAr. NIS protein was localized to trophoblasts, with a tendency to apical distribution, in sections of human placenta immunostained with a monoclonal antibody against hNIS. We conclude that NIS is expressed in placenta and may mediate placental iodide transport. (C) 2001 Harcourt Publishers Ltd.
Resumo:
A major limitation in any high-performance digital communication system is the linearity region of the transmitting amplifier. Nonlinearities typically lead to signal clipping. Efficient communication in such conditions requires maintaining a low peak-to-average power ratio (PAR) in the transmitted signal while achieving a high throughput of data. Excessive PAR leads either to frequent clipping or to inadequate resolution in the analog-to-digital or digital-to-analog converters. Currently proposed signaling schemes for future generation wireless communications suffer from a high PAR. This paper presents a new signaling scheme for channels with clipping which achieves a PAR as low as 3. For a given linear range in the transmitter's digital-to-analog converter, this scheme achieves a lower bit-error rate than existing multicarrier schemes, owing to increased separation between constellation points. We present the theoretical basis for this new scheme, approximations for the expected bit-error rate, and simulation results. (C) 2002 Elsevier Science (USA).
Resumo:
Two studies were conducted to examine the effects of including NaCl at various rates in grain-based supplements for Friesian cows grazing established, dominant (>90%), rainfed kikuyu (Pennisetum clandestinum cv. Common) pastures during summer and autumn in a humid sub-tropical environment. In study 1 (19 January-27 March 1998), 48 cows (36 multiparous, 12 primiparous; 27-96 days postpartum) were allocated to one of four groups based on genetic merit, milk production, liveweight (LW) and days postpartum. They were fed (2.7 kg dry matter (DM) per cow, twice-a-day) one of four isoenergetic and isonitrogenous barley grain-based concentrates containing NaCl at concentrations (% as-fed) of either 0 (SC1), 1.1 (SC2), 2.2 (SC3) or 3.3 (SC4). Maximum temperature humidity index (THImax) was greater than or equal to78 during 50% of the experimental period. Concentrate NaCl content had no effect (P>0.05) on daily milk yield or LW change but daily yields of 4% fat corrected milk (FCM), fat and protein were higher (P0.05) among treatments at 7.6+/-1.24 kg DM per cow. In study 2 (18 January 1999-1 March 1999), 48 cows (32 pluriparous, 16 primiparous: 32-160 days postpartum) were fed (2.7 kg DM per cow twice-a-day) one of two isoenergetic and isonitrogenous barley grain-based concentrates containing NaCl at concentrations (% as-fed) of 0 (control) or 2.2 (HSC). THImax was greater than or equal to78 during 34% of days in the experimental period. Yields of milk, FCM, fat and protein were lower (P0.05) by concentrate NaCl content. These studies indicate that NaCl supplementation can be beneficial in terms of milk production during warm, humid conditions as opposed to milder conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Although the polyunsaturated fatty acids arachidonic acid (AA) and docosahexaenoic acid (DHA) are enriched in the olfactory mucosa, their possible contribution to olfactory transduction has not been investigated. This study characterized their effects on voltage-gated K+ and Na+ channels of rat olfactory receptor neurons. Physiological (3-10 mum) concentrations of AA and DHA potently and irreversibly inhibited the voltage-gated K+ current in a voltage-independent manner. In addition, both compounds significantly reduced the inhibitory potency of the odorants acetophenone and amyl acetate at these channels. By comparison, the steady-state effects of both AA and DHA on the voltage-gated Na+ channel were relatively weak, with half-maximal inhibition requiring approximate to 35 mum of either compound. However, a surprising finding was that the initial application of 3 mum AA to a naive neuron caused a strong but transient inhibition of the Na+ current. The channels became almost completely resistant to this inhibition within 1 min, and a 2-min wash in control solution was insufficient to restore the strong inhibitory effect. These observations suggest that polyunsaturated fatty acids have the potential to strongly influence the coding of odorant information by olfactory receptor neurons.
Resumo:
Inorganic sulfate is one of the most abundant anions in mammalian plasma and is essential for proper cell growth and development, as well as detoxification and activation of many biological compounds. To date, little is understood how physiological levels of sulfate are maintained in the body. Our studies, and of others, have identified the NAS(i)-1 protein to be a functional sulfate transporter in the kidney and intestine, and due to this localization, constitutes a strong candidate gene for maintaining body sulfate homeostasis. Several factors, including hormones and metabolic conditions, have been shown to alter NAS(i)-1 mRNA and protein levels in vivo. In this study, we describe the transcriptional regulation of NaSi-1, with a focus on the mouse NaSi-1 gene (Nas1) that was recently cloned in our laboratory. Vitamin D (1,25-(OH)(2)D-3) and thyroid hormone (T-3) led to an increase in Nas1 promoter activity in OK cells. Mutational analysis of the Nas1 promoter resulted in identification of a direct repeat 6-type vitamin-D-responsive element (DR6 VDRE) at -525 to -508 and an imperfect inverted repeat 0-type T-3 responsive element (IRO T3RE) at -426 to -425 which conferred 1,25-(OH)(2)D-3 and T-3 responsiveness respectively. These findings suggest for vitamin D and thyroid hormone regulation of NaSi-1, may provide important clues to the physiological control of sulfate homeostasis.
Resumo:
Background: Sodium hypochlorite is used commonly as an endodontic irrigant, but there are no published reports that provide details of its use. This survey sought to determine the percentage of Australian dentists who practiced endodontics, whether they used sodium hypochlorite for irrigation, and the manner of dilution, storage and dispensing sodium hypochlorite used by both dentists and endodontists. Methods: All Australian endodontists and a stratified random sample of 200 general dentists in Australia were surveyed to address the issues identified above. Results: Almost 98 per cent of dentists surveyed performed endodontic treatment. Among endodontists, nearly 94 per cent used sodium hypochlorite for irrigation compared with just under 75 per cent of general dentists: Sodium hypochlorite use by general dentists was more common in Victoria and South Australia than in other States. An infant sanitizer (Milton or Johnson's Antibacterial Solution) was used by just over 92 per cent of general practitioners and by more than 67 per cent of endodontists. All other respondents used domestic bleach. One hundred and sixty four of the respondents (80 per cent of endodontists and over 90 per cent of general dentists) used a 1 per cent w/v solution. Ten practitioners used a 4 per cent w/v solution, five used a 2 per cent w/v solution and four used a 1.5 per cent w/v solution. Eighty per cent of the practitioners who diluted their sodium hypochlorite before use, used demineralized water for this purpose. The remainder used tap water. Only four practitioners stored sodium hypochlorite in a manner which risked light exposure and loss of available chlorine content. Conclusions: Sodium hypochlorite is commonly used as an endodontic irrigant and Australian dentists generally stored the material correctly.
Resumo:
Venomous animals have evolved a vast array of peptide toxins for prey capture and defence. These peptides are directed against a wide variety of pharmacological targets, making them an invaluable source of ligands for studying the properties of these targets in different experimental paradigms. A number of these peptides have been used in vivo for proof-of-concept studies, with several having undergone preclinical or clinical development for the treatment of pain, diabetes, multiple sclerosis and cardiovascular diseases. Here we survey the pharmacology of venom peptides and assess their therapeutic prospects.
Resumo:
Sodium dodecyl sulfate (SDS) is commonly used to extract polyhedra from infected cells and diseased dead larval tissues. It was found, however, that 80% of Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) polyhedra produced via cell culture were damaged after 30 min of 0.5% SDS treatment whereas only 20% of in vivo produced polyhedra were damaged by the same treatment. Transmission and scanning electron microscopy revealed that the damaged polyhedra had lost their polyhedron envelopes and virions were dislodged from the polyhedrin matrix, leaving empty spaces that were previously occupied by the occluded virions. Up to 20% in vitro produced polyhedra were resistant to SDS and remained intact, even after a 24 h exposure to SDS. This sensitivity to SDS was observed across a range of cell culture media, including serum supplemented media. Electron microscopy also revealed that the inferior polyhedron envelope of in vitro produced polyhedra is likely due to poor interaction between the polyhedron envelope, polyhedron envelope protein (PEP), and polyhedrin matrix. The PEP gene was cloned and sequenced and mutations in this gene were ruled out as an explanation. In vitro produced polyhedra that were passed through insect larva once were resistant to SDS, indicating that a critical component is lacking in insect cell culture medium used for producing HaSNPV or the cells growing in culture are inefficient in some ways in relation to production of polyhedra. (C) 2002 Elsevier Science (USA). All rights reserved.