899 resultados para SIMULTANEOUS LOCALIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that given a Hecke-Maass form f for SL(2, Z) and a sufficiently large prime q, there exists a primitive Dirichlet character chi of conductor q such that the L-values L(1/2, f circle times chi) and L(1/2, chi) do not vanish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoscale ordering in a polymer blend structure is indispensable to obtain materials with tailored properties. It was established here that controlling the arrangement of nanoparticles, with different characteristics, in co-continuous PC/PVDF (polycarbonate/poly(vinylidene fluoride)) blends can result in outstanding microwave absorption (ca. 90%). An excellent reflection loss (RL) of ca. -71 dB was obtained for a model blend structure wherein the conducting (multiwall carbon nanotubes, MWNTs) and the magnetic inclusions (Fe3O4) are localized in PVDF and the dielectric inclusion (barium titanate, BT) is in PC. The MWNTs were modified using polyaniline, which facilitates better charge transport in the blends. Furthermore, by introducing surface active groups on BT nanoparticles and changing the macroscopic processing conditions, the localization of BT nanoparticles can be tailored, otherwise BT nanoparticles would localize in the preferred phase (PVDF). In this study, we have shown that by ordered arrangement of nanoparticles, the incoming EM radiation can be attenuated. For instance, when PANI-MWNTs were localized in PVDF, the shielding was mainly through reflection. Now by localizing the conducting inclusion and the magnetic lossy materials in PVDF and the dielectric materials in PC, an outstanding shielding effectiveness of ca. -37 dB was achieved where shielding was mainly through absorption (ca. 90%). Thus, this study clearly demonstrates that lightweight microwave absorbers can be designed using polymer blends as a tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In one dimension, noninteracting particles can undergo a localization-delocalization transition in a quasiperiodic potential. Recent studies have suggested that this transition transforms into a many-body localization (MBL) transition upon the introduction of interactions. It has also been shown that mobility edges can appear in the single particle spectrum for certain types of quasiperiodic potentials. Here, we investigate the effect of interactions in two models with such mobility edges. Employing the technique of exact diagonalization for finite-sized systems, we calculate the level spacing distribution, time evolution of entanglement entropy, optical conductivity, and return probability to detect MBL. We find that MBL does indeed occur in one of the two models we study, but the entanglement appears to grow faster than logarithmically with time unlike in other MBL systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An iron(III) salicylate having a dipicolylamine base (andpa) with a photoactive anthracenyl moiety is prepared, characterized, and studied for its photo-induced anticancer activity and cellular localization in HeLa and MCF-7 cells. Its phenyl analogue is structurally characterized by X-ray crystallography. The complex has a ternary structure in which the dipicolylamine ligand and salicylic acid in dianionic form (sal) display respective tridentate and bidentate mode of coordination in Fe(sal)(phdpa)Cl] (1). Complex Fe(sal)(andpa)Cl] (2) having a pendant anthracenyl moiety shows significant photocytotoxicity in visible light (400-700 nm) giving IC50 values of 8.6 +/- 0.7 and 3.4 +/- 0.9 mu M in HeLa and MCF-7 cells, while being essentially nontoxic in the dark (IC50 > 100 mu M). The complex shows cytosolic localization in the cancer cells. Formation of hydroxyl radicals ((OH)-O-center dot) as the reactive oxygen species is evidenced from the pUC19 DNA photocleavage studies. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells. (C) 2016 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a new dictionary learning algorithm called the l(1)-K-svp, by minimizing the l(1) distortion on the data term. The proposed formulation corresponds to maximum a posteriori estimation assuming a Laplacian prior on the coefficient matrix and additive noise, and is, in general, robust to non-Gaussian noise. The l(1) distortion is minimized by employing the iteratively reweighted least-squares algorithm. The dictionary atoms and the corresponding sparse coefficients are simultaneously estimated in the dictionary update step. Experimental results show that l(1)-K-SVD results in noise-robustness, faster convergence, and higher atom recovery rate than the method of optimal directions, K-SVD, and the robust dictionary learning algorithm (RDL), in Gaussian as well as non-Gaussian noise. For a fixed value of sparsity, number of dictionary atoms, and data dimension, l(1)-K-SVD outperforms K-SVD and RDL on small training sets. We also consider the generalized l(p), 0 < p < 1, data metric to tackle heavy-tailed/impulsive noise. In an image denoising application, l(1)-K-SVD was found to result in higher peak signal-to-noise ratio (PSNR) over K-SVD for Laplacian noise. The structural similarity index increases by 0.1 for low input PSNR, which is significant and demonstrates the efficacy of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inverse coupled dependence of electrical conductivity and thermopower on carrier concentration presents a big challenge in achieving a high figure of merit. However, the simultaneous enhancement of electrical conductivity and thermopower can be realized in practice by carefully engineering the electronic band structure. Here by taking the example of Bi2S3, we report a simultaneous increase in both electrical conductivity and thermopower under hydrostatic pressure. Application of hydrostatic pressure enables tuning of electronic structure in such a way that the conductivity effective mass decreases and the density of states effective mass increases. This dependence of effective masses leads to simultaneous enhancement in electrical conductivity and thermopower under n-type doping leading to a huge improvement in the power factor. Also lattice thermal conductivity exhibits very weak pressure dependence in the low pressure range. The large power factor together with low lattice thermal conductivity results in a high ZT value of 1.1 under n-type doping, which is nearly two times higher than the previously reported value. Hence, this pressure-tuned behaviour can enable the development of efficient thermoelectric devices in the moderate to high temperature range. We further demonstrate that similar enhancement can be observed by generating chemical pressure by doping Bi2S3 with smaller iso-electronic elements such as Sb at Bi sites, which can be achieved experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled variation of the electronic properties of. two-dimensional (2D) materials by applying strain has emerged as a promising way to design materials for customized applications. Using density functional theory (DFT) calculations, we show that while the electronic structure and indirect band gap of SnS2 do not change significantly with the number of layers, they can be reversibly tuned by applying biaxial tensile (BT), biaxial compressive (BC), and normal compressive (NC) strains. Mono to multilayered SnS2 exhibit a reversible semiconductor to metal (S-M) transition with applied strain. For bilayer (2L) SnS2, the S-Mtransition occurs at the strain values of 17%,-26%, and -24% under BT, BC, and NC strains, respectively. Due to weaker interlayer coupling, the critical strain value required to achieve the S-Mtransition in SnS2 under NC strain is much higher than for MoS2. From a stability viewpoint, SnS2 becomes unstable at very low strain values on applying BC (-6.5%) and BT strains (4.9%), while it is stable even up to the transition point (-24%) in the case of NC strain. In addition to the reversible tuning of the electronic properties of SnS2, we also show tunability in the phononic band gap of SnS2, which increases with applied NC strain. This gap increases three times faster than for MoS2. This simultaneous tunability of SnS2 at the electronic and phononic levels with strain, makes it a potential candidate in field effect transistors (FETs) and sensors as well as frequency filter applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to reveal the underlying mesoscopic mechanism governing the experimentally observed failure in solids subjected to impact loading, this paper presents a model of statistical microdamage evolution to macroscopic failure, in particular to spallation. Based on statistical microdamage mechanics and experimental measurement of nucleation and growth of microcracks in an Al alloy subjected to plate impact loading, the evolution law of damage and the dynamical function of damage are obtained. Then, a lower bound to damage localization can be derived. It is found that the damage evolution beyond the threshold of damage localization is extremely fast. So, damage localization can serve as a precursor to failure. This is supported by experimental observations. On the other hand, the prediction of failure becomes more accurate, when the dynamic function of damage is fitted with longer experimental observations. We also looked at the failure in creep with the same idea. Still, damage localization is a nice precursor to failure in creep rupture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of amorphous diamond-like carbon is studied. Analysis of the participation ratio shows that π states within the σ-σ* gap are localized. The localization arises from dihedral angle disorder. The localization of π states causes the mobility gap to exceed the optical gap, which accounts for the low carrier mobility and the flat photoluminesence excitation spectrum. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural evolution in localized shear deformation was investigated in an 8090 Al-Li alloy by split Hopkinson pressure bar (strain rate of approximately 10(3) s(-1)) at ambient temperature and 77 K. The alloy was tested in the peak-, over-, under-, and natural-aged conditions, that provide a wide range of microstructural parameters and mechanical properties. Two types of localized shear bands were distinguished by optical microscopy: the deformed shear band and the white-etching shear band. They form at different stages of deformation during localization. There are critical strains for the occurrence of deformed and white-etching localized shear deformation, at the imposed strain rate. Observations by transmission electron microscopy reveal that the white-etching bands contain fine equiaxed grains; it is proposed that they are the result of recrystallization occurring during localization. The deformed-type bands are observed after testing at 77 K in all heat treatment conditions, but they are not as well defined as those developed at ambient temperature. Cracking often occurs along the localized shear at ambient temperature. The decrement in temperature is favorable for the nucleation, growth and coalescence of the microcracks along the shear bands, inducing fracture.