328 resultados para SIEVE
Resumo:
As a basis for the commercial separation of normal paraffins a detailed study has been made of factors affecting the adsorption of binary liquid mixtures of high molecular weight normal paraffins (C12, C16, and C20) from isooctane on type 5A molecular sieves. The literature relating to molecular sieve properties and applications, and to liquid-phase adsorption of high molecular weight normal paraffin compounds by zeolites, was reviewed. Equilibrium isotherms were determined experimentally for the normal paraffins under investigation at temperatures of 303oK, 323oK and 343oK and showed a non-linear, favourable- type of isotherm. A higher equilibrium amount was adsorbed with lower molecular weight normal paraffins. An increase in adsorption temperature resulted in a decrease in the adsorption value. Kinetics of adsorption were investigated for the three normal paraffins at different temperatures. The effective diffusivity and the rate of adsorption of each normal paraffin increased with an increase in temperature in the range 303 to 343oK. The value of activation energy was between 2 and 4 kcal/mole. The dynamic properties of the three systems were investigated over a range of operating conditions (i.e. temperature, flow rate, feed concentration, and molecular sieve size in the range 0.032 x 10-3 to 2 x 10-3m) with a packed column. The heights of adsorption zones calculated by two independent equations (one based on a constant width, constant velocity and adsorption zone and the second on a solute material balance within the adsorption zone) agreed within 3% which confirmed the validity of using the mass transfer zone concept to provide a simple design procedure for the systems under study. The dynamic capacity of type 5A sieves for n-eicosane was lower than for n-hexadecane and n-dodecane corresponding to a lower equilibrium loading capacity and lower overall mass transfer coefficient. The values of individual external, internal, theoretical and experimental overall mass transfer coefficient were determined. The internal resistance was in all cases rate-controlling. A mathematical model for the prediction of dynamic breakthrough curves was developed analytically and solved from the equilibrium isotherm and the mass transfer rate equation. The experimental breakthrough curves were tested against both the proposed model and a graphical method developed by Treybal. The model produced the best fit with mean relative percent deviations of 26, 22, and 13% for the n-dodecane, n-hexadecane, and n-eicosane systems respectively.
Resumo:
Single phase solutions containing three components have been observed to exhibit foaminess near a single to two liquid phase boundary. It was seen, in a sintered plate column under mass transfer conditions, that distillation systems where the liquid appeared as one phase in one part of a column and two phases in another part, exhibited foaminess when the liquid concentration was near the one phase to two phase boundary. Various ternary systems have been studied in a 50 plate. 30mm i.d. Oldershaw column and it was observed that severe foaming occurred in the middle section of the column near the one liquid phase to two liquid phase boundary and no foaming occurred at the end of the column where liquid was either one phase or two phase. This is known as Ross type foam. Mass transfer experiments with Ross type ternary systems have been carried out in a perspex simulator with small and large hole diameter trays. It was observed that by removal of the more volatile component, Ross type foam did not build up on the tray. Severe entrainment of liquid was observed in all cases leading to a 'dry' tray, even with a low free area small diameter hole tray which was expected to produce a bubbly mixture. Entrainment was more severe for high gas superficial velocities and large hole diameters. This behaviour is quite different from the build up of foam observed when one liquid phase/two liquid phase Ross systems were contacted with air above a small sintered disc or with vapour in an Oldershaw distillation column. This observation explains why distillation columns processing mixtures which change from one liquid phase to two liquid phases (or vice versa) must be severely derated to avoid flooding. Single liquid phase holdups at the spray to bubbly transition were measured using a perspex simulator similar to that of Porter & Wong (17). i.e. with no liquid cross flow. A light transmission technique was used to measure the transition from spray regime to bubbly regime. The effect of tray thickness and the ratio of hole diameter to tray thickness on the transition was evaluated using trays of the same hole diameter and free area but having thickness of 2.38 mm, 4 mm, and 6.35 mm. The liquid holdup at the transition was less with the thin metal trays. This result may be interpreted by the theory of Lockett (101), which predicts the transition liquid holdup in terms of the angle of the gas iet leaving the holes in the sieve plate. All the existing correlations have been compared and none were found to be satisfactory and these correlations have been modified in view of the experimental results obtained. A new correlation has been proposed which takes into account the effect of the hole diameter to tray thickness ratio on the transition and good agreement was obtained between the experimental results and the correlated values of the liquid holdup at the transition. Results have been obtained for two immiscible liquids [kerosene and water] on trays to determine whether foaming can be eliminated by operating in the spray regime. Kerosene was added to a fixed volume of water or water was added to a fixed volume of kerosene. In both cases, there was a transition from spray to bubbly. In the water fixed system. the liquid holdup at the transition was slightly less than the pure kerosene system. Whilst for the kerosene fixed system, the transition occurred at much lower liquid holdups. Trends In the results were similar to those for single liquid phase. New correlations have been proposed for the two cases. It has been found that Ross type foams, observed in a sintered plate column and in the Oldershaw column can be eliminated by either carrying out the separation in a packed column or by the addition of defoaming additives.
Resumo:
The enzyme catalysed polytransesterification of diesters with diols was investigated under various conditions. The most consistent results were obtained using crude porcine pancreatic lipase (PPL) suspended in anhydrous diethyl ether. Addition of molecular sieve to the above system gave higher molecular weight products. The PPL catalysed reaction of bis(2,2,2-trichlorethyl) adipate and glutarate with butane-1,4-diol in anhydrous ether with and without molecular sieve was investigated over a range of times from 8 to 240 hours. The 72 hour adipate reaction with molecular sieve gave the highest molecular weight polymer (Mn 6,500 and Mw 9,400). The glutarate gave the maximum molecular weight polyester after 24 hours (Mn 5,700 and Mw 9,500). Occasionally the glutarate reaction produced very high molecular weight polyester-enzyme complexes. Toluene generally gave lower molecular weight products than diethyl ether. Dichloromethane and tetrahydrofuran gave mainly dimers and trimers. Alternative enzyme and diol systems were also investigated. These yielded no polymeric products. The molecular weights of the polyesters were determined by 1H NMR end-group analysis and by GPC. The molecular weights determined by NMR were on average about twice as great as those determined by GPC. The synthesis of the following diesters is described: i)Bis(2,2,2-trichloroethyl) succinate, glutarate, adipate, trans-3-hexenedioate, and trans-3,4-epoxyadipate. ii) Diphenyl glutarate and adipate.iii)Bis(2,2,2-fluoroethyl) glutarate and trans-3-hexendioate.iv) Divinyl glutarate. v) N,N'Glutaryl dicyclohexanone oxime.The polytransesterification of all the above esters with diols was investigated. The easily synthesised bis(2,2,2-trichloroethyl) glutarate and adipate gave the best results and the work was concentrated on these two esters.
Resumo:
The thesis describes experimental work on sieve trays in an air-water simulator, 2.44 m in diameter. The liquid flow pattern, for flowrates similar to those used in commercial scale distillation, was observed experimentally by water cooling experiments, in which the temperature of the water is measured at over 100 positions over the tray area. The water is cooled by the rising air which is forced through the tray. A heat and mass transfer analogy is drawn whereby the water temperature is mapped to liquid concentration in mass transfer, and the water temperature profiles reveal how liquid channelling may reduce the tray efficiency. The first experiment was to observe the flow of water only over an unperforated tray. With the exception of very low weir loads, the flow separated at the ends of the inlet downcomer. This caused liquid to flow straight across the tray between the downcomers and large circulating regions to be formed in the side regions of the tray. The effect of the air crossflow on the flow pattern was then observed on a sieve tray of 10% free area with 1 mm diameter holes (such as is used in cryogenic distillation). The flow patterns developed on the tray were similar to those produced with water only on the unperforated tray, but at low weir loads the air crossflow prevented separation of the water flow and the associated circulating regions. At higher weir loads, liquid channelling down the centre of the tray and circulation in the side regions occurred. The percentage of the tray occupied by circulating liquid depended upon the velocity of the liquid entering the tray, which was set by the weir load and size of the gap under the inlet downcomer. The water cooling experiments showed that the temperature of the water in a circulating region is much lower than in other parts of the tray, indicating that the driving force for heat transfer is reduced. In a column section where trays (and circulating areas) are mounted on top of each other, the circulating regions will cause air (or vapour) passing through them to have a reduced change in temperature or concentration leading a loss in tray efficiency.
Resumo:
This work is concerned with the nature of liquid flow across industrial sieve trays operating in the spray, mixed, and the emulsified flow regimes. In order to overcome the practical difficulties of removing many samples from a commercial tray, the mass transfer process was investigated in an air water simulator column by heat transfer analogy. The temperature of the warm water was measured by many thermocouples as the water flowed across the single pass 1.2 m diameter sieve tray. The thermocouples were linked to a mini computer for the storage of the data. The temperature data were then transferred to a main frame computer to generate temperature profiles - analogous to concentration profiles. A comprehensive study of the existing tray efficiency models was carried out using computerised numerical solutions. The calculated results were compared with experimental results published by the Fractionation Research Incorporation (FRl) and the existing models did not show any agreement with the experimental results. Only the Porter and Lockett model showed a reasonable agreement with the experimental results for cenain tray efficiency values. A rectangular active section tray was constructed and tested to establish the channelling effect and the result of its effect on circular tray designs. The developed flow patterns showed predominantly flat profiles and some indication of significant liquid flow through the central region of the tray. This comfirms that the rectangular tray configuration might not be a satisfactory solution for liquid maldistribution on sieve trays. For a typical industrial tray the flow of liquid as it crosses the tray from the inlet to the outlet weir could be affected by the mixing of liquid by the eddy, momentum and the weir shape in the axial or the transverse direction or both. Conventional U-shape profiles were developed when the operating conditions were such that the froth dispersion was in the mixed regime, with good liquid temperature distribution while in the spray regime. For the 12.5 mm hole diameter tray the constant temperature profiles were found to be in the axial direction while in the spray regime and in the transverse direction for the 4.5 mm hole tray. It was observed that the extent of the liquid stagnant zones at the sides of the tray depended on the tray hole diameter and was larger for the 4.5 mm hole tray. The liquid hold-up results show a high liquid hold-up at the areas of the tray with low liquid temperatures, this supports the doubts about the assumptions of constant point efficiency across an operating tray. Liquid flow over the outlet weir showed more liquid flow at the centre of the tray at high liquid loading with low liquid flow at both ends of the weir. The calculated results of the point and tray efficiency model showed a general increase in the calculated point and tray efficiencies with an increase in the weir loading, as the flow regime changed from the spray to the mixed regime the point and the tray efficiencies increased from approximately 30 to 80%.Through the mixed flow regime the efficiencies were found to remain fairly constant, and as the operating conditions were changed to maintain an emulsified flow regime there was a decrease in the resulting efficiencies. The results of the estimated coefficient of mixing for the small and large hole diameter trays show that the extent of liquid mixing on an operating tray generally increased with increasing capacity factor, but decreased with increasing weir loads. This demonstrates that above certain weir loads, the effect of eddy diffusion mechanism on the process of liquid mixing on an operating tray to be negligible.
Resumo:
The investigation of renal pathophysiology and toxicology has traditionally been advanced by the development of increasingly defined and refined in vitro preparations. This study has sought to develop and evaluate various methods of producing pure samples of renal proximal tubules (PTs) from the Fischer rat. The introduction summarised the most common in vitro preparations together with the parameters used to monitor viability - particularly with regard to toxic events. The most prevalent isolation methods have involved the use of collagenase to produce dissociation of the cortex. However, the present study has shown that even the mildest collagenase treatment caused significant structural damage which resulted in a longevity of only 3hr in suspension. An alternative mechanical isolation technique has been developed in this study that consists of perfusion loading the renal glomeruli with Fe304 followed by disruption of the cortex by homogenisation and sequential sieving. The glomeruli are removed magnetically and the PTs then harvested by a 64μM sieve. PTs isolated in this way showed a vastly superior structural preservation over their collagenase isolated counterparts; also oxygen consumption and enzyme leakage measurements showed a longevity in excess of 6hr when incubated in a very basic medium. Attempts were then made to measure the cytosolic calcium levels in both mechanical and collagenase isolated PTs using the fluorescent calcium indicator Fura. However results were inconclusive due to significant binding of the Fura to the external PT surfaces. In conclusion, PTs prepared by the present mechanical isolation technique exhibit superior preservation and longevity compared with even the mildest collagenase isolation technique and hence appear to offer potential advantages over collagenase isolation as an in vitro renal system.
Resumo:
A multistage distillation column in which mass transfer and a reversible chemical reaction occurred simultaneously, has been investigated to formulate a technique by which this process can be analysed or predicted. A transesterification reaction between ethyl alcohol and butyl acetate, catalysed by concentrated sulphuric acid, was selected for the investigation and all the components were analysed on a gas liquid chromatograph. The transesterification reaction kinetics have been studied in a batch reactor for catalyst concentrations of 0.1 - 1.0 weight percent and temperatures between 21.4 and 85.0 °C. The reaction was found to be second order and dependent on the catalyst concentration at a given temperature. The vapour liquid equilibrium data for six binary, four ternary and one quaternary systems are measured at atmospheric pressure using a modified Cathala dynamic equilibrium still. The systems with the exception of ethyl alcohol - butyl alcohol mixtures, were found to be non-ideal. Multicomponent vapour liquid equilibrium compositions were predicted by a computer programme which utilised the Van Laar constants obtained from the binary data sets. Good agreement was obtained between the predicted and experimental quaternary equilibrium vapour compositions. Continuous transesterification experiments were carried out in a six stage sieve plate distillation column. The column was 3" in internal diameter and of unit construction in glass. The plates were 8" apart and had a free area of 7.7%. Both the liquid and vapour streams were analysed. The component conversion was dependent on the boilup rate and the reflux ratio. Because of the presence of the reaction, the concentration of one of the lighter components increased below the feed plate. In the same region a highly developed foam was formed due to the presence of the catalyst. The experimental results were analysed by the solution of a series of simultaneous enthalpy and mass equations. Good agreement was obtained between the experimental and calculated results.
Resumo:
2000 Mathematics Subject Classification: 11D75, 11D85, 11L20, 11N05, 11N35, 11N36, 11P05, 11P32, 11P55.
Resumo:
Thirteens hade-adaptedr ain forest species were comparedw ith twelve sun-adaptedt ropical forest species for correlates to leaf optical properties (described previously in Amer. J. Bot. 73: 1100-1108). The two samples were similar in absorptance of quanta for photosynthesis, but the shade-adaptedt axa: 1) had significantlyl ower specificl eaf weights,i ndicatinga more metabolically efficient production of surface for quantum capture; 2) synthesized less chlorophyll per unit area; and 3) used less chlorophyll for capturing the same quanta for photosynthesis. The anatomical features that best correlate with this increased efficiency are palisade cell shape and chloroplast distribution. Palisade cells with more equal dimensions have more chloroplasts on their abaxial surfaces. This dense layer of chloroplasts maximizes the light capture efficiency limited by sieve effects. The more columnar palisade cells of sun-adapted taxa allow light to pass through the central vacuoles and spaces between cells, making chloroplasts less efficient in energy capture, but allowing light to reach chloroplasts in the spongy mesophyll. Pioneer species may be an exception to these two groups of species. Three pioneer taxa included in this study have columnar palisade cells that are extremely narrow and packed closely together. This layer allows little penetration of light, but exposure of the leaf undersurface may provide illumination of spongy mesophyll chloroplasts in these plants.
Resumo:
Calcareous floating periphyton mats in the southern Everglades provide habitat for a diverse macroinvertebrate community that has not been well characterized. Our study described this community in an oligotrophic marsh, compared it with the macroinvertebrate community associated with adjacent epiphytic algae attached to macrophytes in the water column, and detected spatial patterns in density and community structure. The floating periphyton mat (floating mat) and epiphytic algae in the water column (submerged epiphyton) were sampled at 4 sites (1 km apart) in northern Shark River Slough, Everglades National Park (ENP), in the early (July) and late (November) wet season. Two perpendicular 90-m transects were established at each site and 100 samples were taken in a nested design. Sites were located in wet-prairie spikerush-dominated sloughs with similar water depths and emergent macrophyte communities. Floating mats were sampled by taking cores (6-cm diameter) that were sorted under magnification to enumerate infauna retained on a 250-μm-mesh sieve and with a maximum dimension >1 mm. Our results showed that floating mats provide habitat for a macroinvertebrate community with higher densities (no. animals/g ash-free dry mass) of Hyalella azteca, Dasyhelea spp., and Cladocera, and lower densities of Chironomidae and Planorbella spp. than communities associated with submerged epiphyton. Densities of the most common taxa increased 3× to 15× from early to late wet season, and community differences between the 2 habitat types became more pronounced. Floating-mat coverage and estimated floating-mat biomass increased 20 to 30% and 30 to 110%, respectively, at most sites in the late wet season. Some intersite variation was observed in individual taxa, but no consistent spatial pattern in any taxon was detected at any scale (from 0.2 m to 3 km). Floating mats and their resident macroinvertebrate communities are important components in the Everglades food web. This community should be included in environmental monitoring programs because degradation and eventual loss of the calcareous periphyton mat is associated with P enrichment in this ecosystem.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides environmental context to all samples from the Tara Oceans Expedition (2009-2013), about water column features at the sampling location. Based on in situ measurements of... at the...
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set is a registry of all samples collected during the Tara Oceans Expedition (2009-2013). The registry provides details about the sampling location and methodology of each sample. Uniform resource locators (URLs) offer direct links to additional contextual environmental data published at PANGAEA, and to the corresponding nucleotides data published at the European Nucleotides Archive (EBI-ENA).
Resumo:
The mesoporous materials has been an special attention, among them was discovered in the 1990´s the mesoporous molecular sieve of SBA-15 type. The good features of the SBA- 15 makes this material very promising in catalysis, however, due to the absence of native active sites, it has low catalytic activity. In this way, different metals and oxides have been included in this molecular sieve as a means of introducing active sites and increase its catalytic activity. Among the oxides that are being researched, there is the niobium oxide, which presents strong acid sites and exists in abundance. Brazil is the largest producer of the mineral. On the other hand, the production of biofuels has been desired, but it requires the development of new catalysts for this purpose. The aim of this work was to develop silicate of niobium by impregnation and by new synthesis method for application in the cracking of moringa oil. The methodology consisted of inserting the niobium oxide either by postsynthesis process using wet impregnation and direct insertion. For direct insert a new method was developed for pH adjustment, being tested different pH, and the pH 2.2 was used different ratios of Si/Nb. The materials were characterized by different techniques such as: XRD, N2 adsorption, SEM, EDS, UV-visible, TG/DTG, DSC, TEM, acidity by thermodesorption of n-butilamine and FTIR. After this part of the catalysts developed by the two methods were tested in the thermocatalytic cracking of moringa oil, being used a simple distillation. All silicates of Niobium obtained showed a highly ordered structure, having high specific areas, good distribution of pore diameters, beyond present a morphology in the form of fibers. In the catalysts after synthesis was observed that the niobium inserted has so as octahedrally and tetrahedrally coordinated, demonstrating that there were also oxides formed on the external surface of SBA-15. The materials obtained in the direct synthesis are only tetrahedrally coordinated. The new synthesis method of pH adjusting by using the buffer solution for it, proved to be very efficient for the production of such materials, because the materials obtained showed characteristics and structures similar to the molecular sieve of SBA-15 type. Among the pH tested the material that presented better characteristics was synthesized at pH 2.2. The application of these materials in catalytic cracking showed a higher formation of organic liquids when compared to thermal cracking, in addition to significantly reducing the acidity and residues formed, demonstrating that the use of silicates of Niobium increases both the conversion and the selectivity of the products.
Resumo:
During the drilling of oil and natural gas are generated solid waste, liquid and gaseous. These solid fragments, which are known as cuttings, are carried to the surface through the drilling fluid. Furthermore, this fluid serves to cool the bit, keeping the internal pressure of the well, and others. This solid residue is very polluting, because it has incorporated beyond the drilling fluid, which has several chemical additives harmful to the environment, some heavy metals that are harmful to the environment, such as lead. To minimize the residue generated, are currently being studied numerous techniques to mitigate the problems that such waste can cause to the environment, like addition of cuttings in the composition of soil cement brick masonry construction, addition of cuttings on the clay matrix for the manufacture of solid masonry bricks and ceramic blocks and coprocessing of the cuttings in cement. So, the main objective of this work is the incorporation of cuttings drilling of oil wells, the cement slurry used in the cementing operation of the well. This cuttings used in this study, arising from the formation Pendências, was milled and separated in a sieve of 100 mesh. After grinding had a mean particle sike in order of 86 mm and crystal structure containing phases of quartz and calcite type, characteristic of the Portland cement. Were formulated and prepared slurries of cement with density 13 lb / gal, containing different concentrations of gravel, and realized characterization tests API SPEC 10A and RP 10B. Free water tests showed values lower than 5.9% and the rheological model that best described the behavior of the mixtures was the power. The results of compressive strength (10.3 MPa) and stability (Dr <0.5 lb / gal) had values within the set of operational procedures. Thus, the gravel from the drilling operation, may be used as binders in addition to Portland cement oil wells, in order to reuse this waste and reduce the cost of the cement paste.
Resumo:
Ceramic materials the alumina base are large industrial applications. They are required for these products, specific characteristics obtained by following strict criteria during the manufacturing process. However, after life, not always these products are reused by a suitable waste management process. In ceramist context, advance research aimed at the reuse of waste aimed at obtaining ceramics and composite materials, with marked reduction of conventional raw materials. Aiming to generate scientific, technological and environmental contribution, this work studied to obtain a composite of alumina ceramic (Al2O3) and sodium beta alumina (NaAl11O17 ), and as starting materials the residue of the ceramic insulator of spark plugs, as a source alumina (Al2O3) powder and unusable sodium bicarbonate (NaHCO3) of fire extinguishers, as a source of sodium oxide (Na2O). The final ceramic product was obtained from a conventional mixture of sodium aluminum oxide in appropriate molar proportions. Sample spark plugs were obtained, discarded by lifetime, specific to a manufacturer, which, after passing through mechanical stress (grinding, magnetic purification, washing, drying and grinding the high energy), which resulted in residue powder with ceramic content of 84.34 % alumina (Al2O3), found by FRX chemical analysis, the phases present and identified by DRX. The dry chemical fire extinguisher, baking soda-based (NaHCO3) with expired, was obtained through direct collection of the waste generated during maintenance. Subjected to heat treatment at 120 °C , the NaHCO3 powder was decomposed in sodium oxide ( Na2O), which, subjected to chemical analysis (FRX) and mineralogical (DRX) revealed a content of 86.62 % sodium oxide (Na2O) . In the following steps the experimental procedure, chemical formulations were made on a molar basis of the starting material (1:9, 1:10 and 1:11 de Na2O/ Al2O3) inclusion of additives, milling parameters, sieve analysis, dilatometry, conformation of specimens, sintering in firing steps at 800 °C , 1000 °C and 1.200 °C with varying stays 30 , 60 and 120 minutes in each of the levels. The characterization of the final product was made by the following physical tests: water absorption, porosity, linear shrinkage, mineralogical analysis by DRX and microstructural analysis by MEV. A higher formation of sodium beta alumina (NaAl11O17), in sintered specimens in levels of 1.200 °C and 120 minutes, despite the prevailing coexistence of alpha phase alumina (Al2O3). From the results obtained opens up prospects for the reuse of waste studied in this work, the potter context and in other technological areas.