978 resultados para Rotating electrical machine
Resumo:
The University of Queensland (UQ) has extensive laboratory facilities associated with each course in the undergraduate electrical engineering program. The laboratories include machines and drives, power systems simulation, power electronics and intelligent equipment diagnostics. A number of postgraduate coursework programs are available at UQ and the courses associated with these programs also use laboratories. The machine laboratory is currently being renovated with i-lab style web based experimental facilities, which could be remotely accessed. Senior level courses use independent projects using laboratory facilities and this is found to be very useful to improve students' learning skill. Laboratory experiments are always an integral part of a course. Most of the experiments are conducted in a group of 2-3 students and thesis projects in BE and major projects in ME are always individual works. Assessment is done in-class for the performance and also for the report and analysis.
Resumo:
Background Cancer monitoring and prevention relies on the critical aspect of timely notification of cancer cases. However, the abstraction and classification of cancer from the free-text of pathology reports and other relevant documents, such as death certificates, exist as complex and time-consuming activities. Aims In this paper, approaches for the automatic detection of notifiable cancer cases as the cause of death from free-text death certificates supplied to Cancer Registries are investigated. Method A number of machine learning classifiers were studied. Features were extracted using natural language techniques and the Medtex toolkit. The numerous features encompassed stemmed words, bi-grams, and concepts from the SNOMED CT medical terminology. The baseline consisted of a keyword spotter using keywords extracted from the long description of ICD-10 cancer related codes. Results Death certificates with notifiable cancer listed as the cause of death can be effectively identified with the methods studied in this paper. A Support Vector Machine (SVM) classifier achieved best performance with an overall F-measure of 0.9866 when evaluated on a set of 5,000 free-text death certificates using the token stem feature set. The SNOMED CT concept plus token stem feature set reached the lowest variance (0.0032) and false negative rate (0.0297) while achieving an F-measure of 0.9864. The SVM classifier accounts for the first 18 of the top 40 evaluated runs, and entails the most robust classifier with a variance of 0.001141, half the variance of the other classifiers. Conclusion The selection of features significantly produced the most influences on the performance of the classifiers, although the type of classifier employed also affects performance. In contrast, the feature weighting schema created a negligible effect on performance. Specifically, it is found that stemmed tokens with or without SNOMED CT concepts create the most effective feature when combined with an SVM classifier.
Resumo:
This study presents an acoustic emission (AE) based fault diagnosis for low speed bearing using multi-class relevance vector machine (RVM). A low speed test rig was developed to simulate the various defects with shaft speeds as low as 10 rpm under several loading conditions. The data was acquired using anAEsensor with the test bearing operating at a constant loading (5 kN) andwith a speed range from20 to 80 rpm. This study is aimed at finding a reliable method/tool for low speed machines fault diagnosis based on AE signal. In the present study, component analysis was performed to extract the bearing feature and to reduce the dimensionality of original data feature. The result shows that multi-class RVM offers a promising approach for fault diagnosis of low speed machines.
Resumo:
Rolling Element Bearings (REBs) are vital components in rotating machineries for providing rotating motion. In slow speed rotating machines, bearings are normally subjected to heavy static loads and a catastrophic failure can cause enormous disruption to production and human safety. Due to its low operating speed the impact energy generated by the rotating elements on the defective components is not sufficient to produce a detectable vibration response. This is further aggravated by the inability of general measuring instruments to detect and process the weak signals at the initiation of the defect accurately. Furthermore, the weak signals are often corrupted by background noise. This is a serious problem faced by maintenance engineers today and the inability to detect an incipient failure of the machine can significantly increases the risk of functional failure and costly downtime. This paper presents the application of noise removal techniques for enhancing the detection capability for slow speed REB condition monitoring. Blind deconvolution (BD) and adaptive line enhancer (ALE) are compared to evaluate their performance in enhancing the source signal with consequential removal of background noise. In the experimental study, incipient defects were seeded on a number of roller bearings and the signals were acquired using acoustic emission (AE) sensor. Kurtosis and modified peak ratio (mPR) were used to determine the detectability of signal corrupted by noise.
Resumo:
Robust facial expression recognition (FER) under occluded face conditions is challenging. It requires robust algorithms of feature extraction and investigations into the effects of different types of occlusion on the recognition performance to gain insight. Previous FER studies in this area have been limited. They have spanned recovery strategies for loss of local texture information and testing limited to only a few types of occlusion and predominantly a matched train-test strategy. This paper proposes a robust approach that employs a Monte Carlo algorithm to extract a set of Gabor based part-face templates from gallery images and converts these templates into template match distance features. The resulting feature vectors are robust to occlusion because occluded parts are covered by some but not all of the random templates. The method is evaluated using facial images with occluded regions around the eyes and the mouth, randomly placed occlusion patches of different sizes, and near-realistic occlusion of eyes with clear and solid glasses. Both matched and mis-matched train and test strategies are adopted to analyze the effects of such occlusion. Overall recognition performance and the performance for each facial expression are investigated. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the high robustness and fast processing speed of our approach, and provide useful insight into the effects of occlusion on FER. The results on the parameter sensitivity demonstrate a certain level of robustness of the approach to changes in the orientation and scale of Gabor filters, the size of templates, and occlusions ratios. Performance comparisons with previous approaches show that the proposed method is more robust to occlusion with lower reductions in accuracy from occlusion of eyes or mouth.
Resumo:
This paper presents a novel control strategy for velocity tracking of Permanent Magnet Synchronous Machines (PMSM). The model of the machine is considered within the port-Hamiltonian framework and a control is designed using concepts of immersion and invariance (I&I) recently developed in the literature. The proposed controller ensures internal stability and output regulation, and it forces integral action on non-passive outputs.
Resumo:
Unstable density-driven flow can lead to enhanced solute transport in groundwater. Only recently has the complex fingering pattern associated with free convection been documented in field settings. Electrical resistivity (ER) tomography has been used to capture a snapshot of convective instabilities at a single point in time, but a thorough transient analysis is still lacking in the literature. We present the results of a 2 year experimental study at a shallow aquifer in the United Arab Emirates that was designed to specifically explore the transient nature of free convection. ER tomography data documented the presence of convective fingers following a significant rainfall event. We demonstrate that the complex fingering pattern had completely disappeared a year after the rainfall event. The observation is supported by an analysis of the aquifer halite budget and hydrodynamic modeling of the transient character of the fingering instabilities. Modeling results show that the transient dynamics of the gravitational instabilities (their initial development, infiltration into the underlying lower-density groundwater, and subsequent decay) are in agreement with the timing observed in the time-lapse ER measurements. All experimental observations and modeling results are consistent with the hypothesis that a dense brine that infiltrated into the aquifer from a surficial source was the cause of free convection at this site, and that the finite nature of the dense brine source and dispersive mixing led to the decay of instabilities with time. This study highlights the importance of the transience of free convection phenomena and suggests that these processes are more rapid than was previously understood.
Resumo:
Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc...
Resumo:
Recent advances in computer vision and machine learning suggest that a wide range of problems can be addressed more appropriately by considering non-Euclidean geometry. In this paper we explore sparse dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping, which enables us to devise a closed-form solution for updating a Grassmann dictionary, atom by atom. Furthermore, to handle non-linearity in data, we propose a kernelised version of the dictionary learning algorithm. Experiments on several classification tasks (face recognition, action recognition, dynamic texture classification) show that the proposed approach achieves considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelised Affine Hull Method and graph-embedding Grassmann discriminant analysis.
Resumo:
In a conventional ac motor drive using field-oriented control, a dc-link voltage, speed, and at least two current sensors are required. Hence, in the event of sensor failure, the performance of the drive system can be severely compromised. This paper presents a sensor fault-tolerant control strategy for interior permanent-magnet synchronous motor (IPMSM) drives. Three independent observers are proposed to estimate the speed, dc-link voltage, and currents of the machine. If a sensor fault is detected, the drive system isolates the faulty sensor while retaining the remaining functional ones. The signal is then acquired from the corresponding observer in order to maintain the operation of the drive system. The experimental results provided verify the effectiveness of the proposed approach.
Resumo:
Unbalanced or non-linear loads result in distorted stator currents and electromagnetic torque pulsations in stand-alone doubly fed induction generators (DFIGs). This study proposes the use of a proportional-integral repetitive control (PIRC) scheme so as to mitigate the levels of harmonic and unbalance at the stator terminals of the DFIG. The PIRC is structurally simpler and requires much less computation than existing methods. Analysis of the PIRC operation and the methodology to determine the control parameters is included. Simulation study as well as laboratory test measurements demonstrate clearly the effectiveness of the proposed PIRC control scheme.
Resumo:
In this paper, we present an approach for image-based surface classification using multi-class Support Vector Machine (SVM). Classifying surfaces in aerial images is an important step towards an increased aircraft autonomy in emergency landing situations. We design a one-vs-all SVM classifier and conduct experiments on five data sets. Results demonstrate consistent overall performance figures over 88% and approximately 8% more accurate to those published on multi-class SVM on the KTH TIPS data set. We also show per-class performance values by using normalised confusion matrices. Our approach is designed to be executed online using a minimum set of feature attributes representing a feasible and ready-to-deploy system for onboard execution.
Resumo:
This paper introduces a novel cage induction generator and presents a mathematical model, through which its behavior can be accurately predicted. The proposed generator system employs a three-phase cage induction machine and generates single-phase and constant-frequency electricity at varying rotor speeds without an intermediate inverter stage. The technique uses any one of the three stator phases of the machine as the excitation winding and the remaining two phases, which are connected in series, as the power winding. The two-series-connected-and-one-isolated (TSCAOI) phase winding configuration magnetically decouples the two sets of windings, enabling independent control. Electricity is generated through the power winding at both sub- and super-synchronous speeds with appropriate excitation to the isolated single winding at any frequency of generation. A dynamic mathematical model, which accurately predicts the behavior of the proposed generator, is also presented and implemented in MATLAB/Simulink. Experimental results of a 2-kW prototype generator under various operating conditions are presented, together with theoretical results, to demonstrate the viability of the TSCAOI power generation. The proposed generator is simple and capable of both storage and retrieval of energy through its excitation winding and is expected to be suitable for applications, such as small wind turbines and microhydro systems.
Resumo:
Aims Although suctioning is a standard airway maintenance procedure, there are significant associated risks, such as loss of lung volume due to high negative suction pressures. This study aims to assess the extent and duration of change in end-expiratory level (EEL) resulting from endotracheal tube (ETT) suction and to examine the relationship between EEL and regional lung ventilation in ventilated preterm infants with respiratory distress syndrome. Methods A prospective observational clinical study of the effect of ETT suction on 20 non-muscle-relaxed preterm infants with respiratory distress syndrome (RDS) on conventional mechanical ventilation was conducted in a neonatal intensive care unit. Ventilation distribution was measured with regional impedance amplitudes and EEL using electrical impedance tomography. Results ETT suction resulted in a significant increase in EEL post-suction (P < 0.01). Regionally, anterior EEL decreased and posterior EEL increased post-suction, suggesting heterogeneity. Tidal volume was significantly lower in volume-guarantee ventilation compared with pressure-controlled ventilation (P = 0.04). Conclusions ETT suction in non-muscle-relaxed and ventilated preterm infants with RDS results in significant lung volume increase that is maintained for at least 90 min. Regional differences in distribution of ventilation with ETT suction suggest that the behaviour of the lung is heterogeneous in nature.
Resumo:
Polymeric nanocomposites have been shown to possess superior electrical insulation properties compared to traditional filled-resins. However, poor dispersion uniformity and insufficient filler-matrix interaction can adversely affect insulation properties of nanocomposites. In this study, the use of plasma polymerization is proposed to coat poly(ethylene oxide) polymer layers on silica nanoparticles. It is shown that better dispersion is achieved and C-O bonds are created between the surface functional groups of the nanoparticles and the host epoxy polymer. Electrical insulation tests demonstrate that the nanocomposites with plasma polymerized silica nanoparticles feature better resistance against electrical treeing, lower dielectric constant, and also mitigated space charge built-up. Therefore, plasma polymerization offers a promising fabrication technique to further improve the synthesis of nanocomposite dielectrics with superior electrical insulation properties.