941 resultados para Rotating disk electrodes
Resumo:
Sparking potentials have been measured in nitrogen and dry air between coaxial cylindrical electrodes for values of n = R2/R1 = approximately 1 to 30 (R1 = inner electrode radius, R2 = outer electrode radius) in the presence of crossed uniform magnetic fields. The magnetic flux density was varied from 0 to 3000 Gauss. It has been shown that the minimum sparking potentials in the presence of the crossed magnetic field can be evaluated on the basis of the equivalent pressure concept when the secondary ionization coefficient does not vary appreciably with B/p (B = magnetic flux density, p = gas pressure). The values of secondary ionization coefficients �¿B in nitrogen in crossed fields calculated from measured values of sparking potentials and Townsend ionization coefficients taken from the literature, have been reported. The calculated values of collision frequencies in nitrogen from minimum sparking potentials in crossed fields are found to increase with increasing B/p at constant E/pe (pe = equivalent pressure). Studies on the similarity relationship in crossed fields has shown that the similarity theorem is obeyed in dry air for both polarities of the central electrode in crossed fields.
Resumo:
We investigate the variation of the gas and the radiation pressure in accretion disks during the infall of matter to the black hole and its effect to the flow. While the flow far away from the black hole might be non-relativistic, in the vicinity of the black hole it is expected to be relativistic behaving more like radiation. Therefore, the ratio of gas pressure to total pressure (beta) and the underlying polytropic index (gamma) should not be constant throughout the flow. We obtain that accretion flows exhibit significant variation of beta and then gamma, which affects solutions described in the standard literature based on constant beta. Certain solutions for a particular set of initial parameters with a constant beta do not exist when the variation of beta is incorporated appropriately. We model the viscous sub-Keplerian accretion disk with a nonzero component of advection and pressure gradient around black holes by preserving the conservations of mass, momentum, energy, supplemented by the evolution of beta. By solving the set of five coupled differential equations, we obtain the thermo-hydrodynamical properties of the flow. We show that during infall, beta of the flow could vary up to similar to 300%, while gamma up to similar to 20%. This might have a significant impact to the disk solutions in explaining observed data, e.g. super-luminal jets from disks, luminosity, and then extracting fundamental properties from them. Hence any conclusion based on constant gamma and beta should be taken with caution and corrected. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Glassy carbon electrodes (GCE) and carbon paste electrodes (CPE) were modified with imidazole functionalized polyaniline with the aim to develop a sensor for lead (II) in both acidic and basic aqueous solution. The electrodes were characterized by cyclic voltammetry and differential pulse adsorptive stripping voltammetry. The limit of detections obtained with glassy carbon electrode and carbon paste electrode are 20 ng mL(-1) and 2 ng mL(-1) of lead ion, respectively. An interference study was carried out with Cd(II), As(III), Hg(II) and Co(II) ions. Cd(II) ions interfere significantly (peak overlap) and As(III) has a depressing effect on the lead signal. The influence of pH was investigated indicating that bare and modified GCE and CPE show optimum response at pH 4.0 +/- 0.05.
Resumo:
We study the linear m= 1 counter-rotating instability in a two-component, nearly Keplerian disc. Our goal is to understand these slow modes in discs orbiting massive black holes in galactic nuclei. They are of interest not only because they are of large spatial scale and can hence dominate observations but also because they can be growing modes that are readily excited by accretion events. Self-gravity being non-local, the eigenvalue problem results in a pair of coupled integral equations, which we derive for a two-component softened gravity disc. We solve this integral eigenvalue problem numerically for various values of mass fraction in the counter-rotating component. The eigenvalues are in general complex, being real only in the absence of the counter-rotating component, or imaginary when both components have identical surface density profiles. Our main results are as follows: (i) the pattern speed appears to be non-negative, with the growth (or damping) rate being larger for larger values of the pattern speed; (ii) for a given value of the pattern speed, the growth (or damping) rate increases as the mass in the counter-rotating component increases; (iii) the number of nodes of the eigenfunctions decreases with increasing pattern speed and growth rate. Observations of lopsided brightness distributions would then be dominated by modes with the least number of nodes, which also possess the largest pattern speeds and growth rates.
Resumo:
This paper presents a spectral finite element formulation for uniform and tapered rotating CNT embedded polymer composite beams. The exact solution to the governing differential equation of a rotating Euler-Bernoulli beam with maximum centrifugal force is used as an interpolating function for the spectral element formulation. Free vibration and wave propagation analysis is carried out using the formulated spectral element. The present study shows the substantial effect of volume fraction and L/D ratio of CNTs in a beam on the natural frequency, impulse response and wave propagation characteristics of the rotating beam. It is found that the CNTs embedded in the matrix can make the rotating beam non-dispersive in nature at higher rotation speeds. Embedded CNTs can significantly alter the dynamics of polymer-nanocomposite beams. The results are also compared with those obtained for carbon fiber reinforced laminated composite rotating beams. It is observed that CNT reinforced rotating beams are superior in performance compared to laminated composite rotating beams. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Epoxy resin bonded mica splitting is the insulation of choice for machine stators. However, this system is seen to be relatively weak under time varying mechanical stress, in particular the vibration causing delamination of mica and deboning of mica from the resin matrix. The situation is accentuated under the combined action of electrical, thermal and mechanical stress. Physical and probabilistic models for failure of such systems have been proposed by one of the authors of this paper earlier. This paper presents a pragmatic accelerated failure data acquisition and analytical paradigm under multi factor coupled stress, Electrical, Thermal. The parameters of the phenomenological model so developed are estimated based on sound statistical treatment of failure data.
Resumo:
The origin of hydrodynamic turbulence in rotating shear flows is investigated, with particular emphasis on the flows whose angular velocity decreases but whose specific angular momentum increases with the increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain the observed data. Such a mismatch between the linear theory and the observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and then the corresponding turbulence therein is ruled out. This work explores the effect of stochastic noise on such hydrodynamic flows. We essentially concentrate on a small section of such a flow, which is nothing but a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disc. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities and hence large energy dissipations of perturbation, which presumably generate the instability. A range of angular velocity (Omega) profiles of the background flow, starting from that of a constant specific angular momentum (lambda = Omega r(2); r being the radial coordinate) to a constant circular velocity (v(phi) = Omega r), is explored. However, all the background angular velocities exhibit identical growth and roughness exponents of their perturbations, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand the origin of instability and turbulence in three-dimensional Rayleigh stable rotating shear flows by introducing additive noise to the underlying linearized governing equations. This has important implications to resolve the turbulence problem in astrophysical hydrodynamic flows such as accretion discs.
Resumo:
The electrochemical profiles of exfoliated graphite electrodes (EG) and glassy carbon electrodes (GCE) were recorded using cyclic voltammetry and square wave voltammetry in the presence of various supporting electrolytes and Fe(CN)(6)](3-/4-), Ru(NH3)(6)](2+/3+), ferrocene redox probes. In the supporting electrolytes (KCl, H2SO4, NaOH, tetrabutylammoniumtetraflouroborate, phosphate buffers), the potential windows of EG were found in some cases to be about 200 mV larger than that of GCE. The electroactive surface area of EG was estimated to be 19.5 % larger than the GCE which resulted in higher peak currents on the EG electrode. Furthermore, EG was modified with various nanomaterials such as poly (propylene imine) dendrimer, gold nanoparticles, and dendrimer-gold nanoparticles composite. The morphologies of the modified electrodes were studied using scanning electron microscopy and their electrochemical reactivities in the three redox probes were investigated. The current and the reversibility of redox probes were enhanced with the presence of modifiers in different degrees with dendrimer and gold nanoparticles having a favorable edge.
Resumo:
In this paper we look for nonuniform rotating beams that are isospectral to a given uniform nonrotating beam. A rotating nonuniform beam is isospectral to the given uniform nonrotating beam if both the beams have the same spectral properties, i.e., both the beams have the same set of natural frequencies under a given boundary condition. The Barcilon-Gottlieb type transformation is proposed that converts the governing equation of a rotating beam to that of a uniform nonrotating beam. We show that there exist rotating beams isospectral to a given uniform nonrotating beam under some special conditions. The boundary conditions we consider are clamped-free and hinged-free with an elastic hinge spring. An upper bound on the rotation speed for which isospectral beams exist is proposed. The mass and stiffness distributions for these nonuniform rotating beams which are isospectral to the given uniform nonrotating beam are obtained. We use these mass and stiffness distributions in a finite element analysis to show that the obtained beams are isospectral to the given uniform nonrotating beam. A numerical example of a beam having a rectangular cross section is presented to show the application of our analysis. DOI: 10.1115/1.4006460]
Resumo:
The governing differential equation of a rotating beam becomes the stiff-string equation if we assume uniform tension. We find the tension in the stiff string which yields the same frequency as a rotating cantilever beam with a prescribed rotating speed and identical uniform mass and stiffness. This tension varies for different modes and are found by solving a transcendental equation using bisection method. We also find the location along the rotating beam where equivalent constant tension for the stiff string acts for a given mode. Both Euler-Bernoulli and Timoshenko beams are considered for numerical results. The results provide physical insight into relation between rotating beams and stiff string which are useful for creating basis functions for approximate methods in vibration analysis of rotating beams.
Resumo:
In this paper, we seek to find non-rotating beams with continuous mass and flexural stiffness distributions, that are isospectral to a given uniform rotating beam. The Barcilon-Gottlieb transformation is used to convert the fourth order governing equation of a non-rotating beam, to a canonical fourth order eigenvalue problem. If the coefficients in this canonical equation match with the coefficients of the uniform rotating beam equation, then the non-rotating beam is isospectral to the given rotating beam. The conditions on matching the coefficients leads to a pair of coupled differential equations. We solve these coupled differential equations for a particular case, and thereby obtain a class of non-rotating beams that are isospectral to a uniform rotating beam. However, to obtain isospectral beams, the transformation must leave the boundary conditions invariant. We show that the clamped end boundary condition is always invariant, and for the free end boundary condition to be invariant, we impose certain conditions on the beam characteristics. We also verify numerically that the frequencies of the non-rotating beam obtained using the finite element method (FEM) are the exact frequencies of the uniform rotating beam. Finally, the example of beams having a rectangular cross-section is presented to show the application of our analysis. Since experimental determination of rotating beam frequencies is a difficult task, experiments can be easily conducted on these rectangular non-rotating beams, to calculate the frequencies of the rotating beam. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the stiffness and mass per unit length distributions of a rotating beam, which is isospectral to a given uniform axially loaded nonrotating beam, are determined analytically. The Barcilon-Gottlieb transformation is extended so that it transforms the governing equation of a rotating beam into the governing equation of a uniform, axially loaded nonrotating beam. Analysis is limited to a certain class of Euler-Bernoulli cantilever beams, where the product between the stiffness and the cube of mass per unit length is a constant. The derived mass and stiffness distributions of the rotating beam are used in a finite element analysis to confirm the frequency equivalence of the given and derived beams. Examples of physically realizable beams that have a rectangular cross section are shown as a practical application of the analysis.
Resumo:
Inspired by the Brazilian disk geometry we examine the utility of an edge cracked semicircular disk (ECSD) specimen for rapid assessment of fracture toughness of brittle materials using compressive loading. It is desirable to optimize the geometry towards a constant form factor F for evaluating K-I. In this investigation photoelastic and finite element results for K-I evaluation highlight the effect of loading modeled using a Hertzian. A Hertzian loading subtending 4 degrees at the center leads to a surprisingly constant form factor of 1.36. This special case is further analyzed by applying uniform pressure over a chord for facilitating testing.
Resumo:
The governing differential equation of the rotating beam reduces to that of a stiff string when the centrifugal force is assumed as constant. The solution of the static homogeneous part of this equation is enhanced with a polynomial term and used in the Rayleighs method. Numerical experiments show better agreement with converged finite element solutions compared to polynomials. Using this as an estimate for the first mode shape, higher mode shape approximations are obtained using Gram-Schmidt orthogonalization. Estimates for the first five natural frequencies of uniform and tapered beams are obtained accurately using a very low order Rayleigh-Ritz approximation.
Resumo:
We analyze the utility of edge cracked semicircular disk (ECSD) for rapid assessment of fracture toughness using compressive loading. Continuing our earlier work on ECSD, a theoretical examination here leads to a novel way for synthesizing weight functions using two distinct form factors. The efficacy of ECSD mode-I weight function synthesized using displacement and form factor methods is demonstrated by comparing with finite element results. Theory of elasticity in conjunction with finite element method is utilized to analyze crack opening potency of ECSD under eccentric compression to explore newer configurations of ECSD for fracture testing.