614 resultados para Roof gutters


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building roofs play a very important role in the energy balance of buildings, especially in summer, when they are hit by a rather high solar irradiance. Depending on the type of finishing layer, roofs can absorb a great amount of heat and reach quite high temperatures on their outermost surface, which determines significant room overheating. However, the use of highly reflective cool materials can help to maintain low outer surface temperatures; this practice may improve indoor thermal comfort and reduce the cooling energy need during the hot season.This technology is currently well known and widely used in the USA, while receiving increasing attention in Europe. In order to investigate the effectiveness of cool roofs as a passive strategy for passive cooling in moderately hot climates, this paper presents the numerical results of a case study based on the dynamic thermal analysis of an existing office building in Catania (southern Italy, Mediterranean area). The results show how the application of a cool paint on the roof can enhance the thermal comfort of the occupants by reducing the operative temperatures of the rooms and to reduce the overall energy needs of the building for space heating and cooling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Roofs are severely hit by solar radiation in summer; hence the use of cool materials on the finishing layer provides a significant reduction in the heat flow entering the building, with sensible attenuation in the building cooling load. In this paper, a case study is presented, based on the dynamic simulation of an existing office building in Catania (southern Italy). Here, a part of the roof has been recently treated with a commercial cool paint, with the aim of improving thermal comfort in summer. Hence, the simulations represent a preliminary study that will allow assessing the expected effectiveness of the intervention. More in detail, the results of the simulations will be discussed in terms of both thermal comfort and energy savings, through the evaluation of parameters such as the roof surface temperature, the operative temperature and the cooling load for both conditions, i.e. with and without the cool paint. The paper also discusses the potential increase in the energy needs for winter heating, and looks at the overall annual balance in terms of primary energy; this is made by considering different climatic conditions and envelope characteristics. These aspects are usually not well highlighted in the current scientific literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cool materials are characterized by high solar reflectance and high thermal emittance; when applied to the external surface of a roof, they make it possible to limit the amount of solar irradiance absorbed by the roof, and to increase the rate of heat flux emitted by irradiation to the environment, especially during nighttime. However, a roof also releases heat by convection on its external surface; this mechanism is not negligible, and an incorrect evaluation of its entity might introduce significant inaccuracy in the assessment of the thermal performance of a cool roof, in terms of surface temperature and rate of heat flux transferred to the indoors. This issue is particularly relevant in numerical simulations, which are essential in the design stage, therefore it deserves adequate attention. In the present paper, a review of the most common algorithms used for the calculation of the convective heat transfer coefficient due to wind on horizontal building surfaces is presented. Then, with reference to a case study in Italy, the simulated results are compared to the outcomes of a measurement campaign. Hence, the most appropriate algorithms for the convective coefficient are identified, and the errors deriving by an incorrect selection of this coefficient are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cool materials are characterized by having a high solar reflectance r – which is able to reduce heat gains during daytime - and a high thermal emissivity ε that enables them to dissipate the heat absorbed throughout the day during night. Despite the concept of cool roofs - i.e. the application of cool materials to roof surfaces - is well known in US since 1990s, many studies focused on their performance in both residential and commercial sectors under various climatic conditions for US countries, while only a few case studies are analyzed in EU countries. The present work aims at analyzing the thermal benefits due to their application to existing office buildings located in EU countries. Indeed, due to their weight in the existing buildings stock, as well as the very low rate of new buildings construction, the retrofit of office buildings is a topic of great concern worldwide. After an in-depth characterization of the existing buildings stock in the EU, the book gives an insight into roof energy balance due to different technological solutions, showing in which cases and to what extent cool roofs are preferable. A detailed description of the physical properties of cool materials and their availability on the market provides a solid background for the parametric analysis carried out by means of detailed numerical models that aims at evaluating cool roofs performance for various climates and office buildings configurations. With the help of dynamic simulations, the thermal behavior of representative office buildings of the existing EU buildings stock is assessed in terms of thermal comfort and energy needs for air conditioning. The results, which consider several variations of building features that may affect the resulting energy balance, show how cool roofs are an effective strategy for reducing overheating occurrences and thus improving thermal comfort in any climate. On the other hand, potential heating penalties due to a reduction in the incoming heat fluxes through the roof are taken into account, as well as the aging process of cool materials. Finally, an economic analysis of the best performing models shows the boundaries for their economic convenience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>Nongeniculate Corallinaceae are poorly known in Brazil. In our endeavor to identify this group of seaweeds along the Brazilian coast we came across some specimens that fit well into the accepted circumscription of Litothamnion Heydrich. Within this genus they could be identified to what has been called L. superpositum Foslie. The specimens were represented by nongeniculate, free living specimens (rhodoliths); lumpy to fruticose growth-form, presenting flared epithallial cells in transversal section; multiporate tetrasporangial conceptacles, with roof protruding above or flush with the surrounding thallus surface; chambers 250-525 mu m in diameter and 150-230 mu m high, roof structured by filaments with 3-5 cells long; and pores in depression. Among the species described from the Brazilian coast, L. heteromorphum (Foslie) Foslie presented anatomical and reproductive characteristics similar to the referred species described from southern Africa and Australia. Therefore, we propose to consider L. heteromorphum as a heterotypic synonym of L. superpositum and extending its distribution to the Western Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Endovascular procedures and direct surgical clipping, are the main therapeutic modalities for managing of BAAs. Furthermore, giant or wide-necked aneurysms and those that involve the PCA or perforators at its neck usually are not embolized. Case Description: A 55-year-old man presented to the emergency room complaining Of Sudden and intense headache. Neurological examination evidenced meningismus. Computed tomography disclosed a subarachnoid hemorrhage (Fisher grade III). Arteriograms revealed BAA, whose neck was partially obseured by the PCP. A standard pterional craniotomy was performed, followed. by extensive drilling of the greater sphenoid wing. The neck was partially hidden by the PCP, and no proximal control was obtained without drilling the PCP and opening the CS (modified TcA). Drilling of the PCP was begun by cutting the overlying dura and extended caudally as much as possible. Next. opening, of the roof of the CS was performed by incising the dura in the oculomotor trigone medical and parallel 10 the oculomotor nerve and lateral to ICA: the incision progressed posteriorly toward the dorsum sellae. Further resection of the dorsum sellac and clivus was carried out. After performing these steps, proximal control was obtained, aneurysm was deflated, perforators were saved. and aneurysm was clipped. Conclusions: This study has demonstrated the clinical Usefulness of and abbreviated form of the TcA, which led the ""modified TcA."" in approaching complex low-lying, BAA. It provides additional surgical room by removing the PCP and partially, opening the CS, which permits further bone removal and improves exposure. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Itaoca pluton consists of porphyritic monzogranite that intruded the upper crust into low-grade metasedimentary rocks of the Apiai Dornain (Ribeira Belt). Anisotropy of magnetic susceptibility and zircon U-Pb (Shrimp) geochronology were combined to determine pluton emplacement mechanisms and its chronology relative to the collision structures of the Paranapiacaba (Brasiliano II) orogenic system. Magnetic susceptibility ranges between 4 and 38 x 10(-3) SI, and thermomagnetic measurements indicate multidomain magnetite is the main carrier of anisotropy. The pluton shows an ""onion-skin"" structure roughly elongated to the northeast with its hinge zone including kilometer-wide roof-pendants. Magnetic lineations are variable in orientation in consistency with the dominant oblate symmetry of the magnetic fabric. A distinct NE-trending point-maxima, however, indicates the mean lineation is parallel to the stretching direction of the transpressive deformation that affected the regional host rocks. Prismatic zircon from the monzogranite, both in the core and in the finely-zoned margins, yielded an age of 623 +/- 10 Ma. These results suggest the magmatic fabric recorded the earlier strain increments of the regional shear deformation. It may correspond to the transition from continental arc to collision tectonics of the southern Ribeira Belt. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Capivarita Anorthosite, formed in an intraplate environment and later metamorphosed under amphibolites fades conditions, is exposed in the Dom Feliciano Belt as part of the Brasiliano magmatic arc and occurs as a roof-pedant in, or is even intruded by, 0.6 Ga post-collisional granites. In this work, magmatic and metamorphic minerals were dated using the LA-MC-ICP-MS in situ method. U-Pb magmatic and metamorphic zircon dating yielded an age of 1573 +/- 21 Ma and of 606 +/- 6 Ma, respectively, whereas the igneous titanite dating yielded an age of 1530 +/- 33 Ma and the metamorphic ages were 651 +/- 9 Ma and 601 +/- 5 Ma. The Lu-Hf model ages showed two clusters from 1.81 to 2.03 Ga (calf from +2.21 to +6.42) and 2.55-2.62 Ga (epsilon epsilon Hf from -4.59 to -5.64). This intraplate magmatism can be connected to a very important episode of continental accretion in an extensional setting from the fragmentation of the supercontinent during the Early Mesoproterozoic. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Students, likely studying carpentry, are shown working on the roof of a model of a house in a classroom at the New York Trade School. Black and white photograph.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy efficiency and renewable energy use are two main priorities leading to industrial sustainability nowadays according to European Steel Technology Platform (ESTP). Modernization efforts can be done by industries to improve energy consumptions of the production lines. These days, steel making industrial applications are energy and emission intensive. It was estimated that over the past years, energy consumption and corresponding CO2 generation has increased steadily reaching approximately 338.15 parts per million in august 2010 [1]. These kinds of facts and statistics have introduced a lot of room for improvement in energy efficiency for industrial applications through modernization and use of renewable energy sources such as solar Photovoltaic Systems (PV).The purpose of this thesis work is to make a preliminary design and simulation of the solar photovoltaic system which would attempt to cover the energy demand of the initial part of the pickling line hydraulic system at the SSAB steel plant. For this purpose, the energy consumptions of this hydraulic system would be studied and evaluated and a general analysis of the hydraulic and control components performance would be done which would yield a proper set of guidelines contributing towards future energy savings. The results of the energy efficiency analysis showed that the initial part of the pickling line hydraulic system worked with a low efficiency of 3.3%. Results of general analysis showed that hydraulic accumulators of 650 liter size should be used by the initial part pickling line system in combination with a one pump delivery of 100 l/min. Based on this, one PV system can deliver energy to an AC motor-pump set covering 17.6% of total energy and another PV system can supply a DC hydraulic pump substituting 26.7% of the demand. The first system used 290 m2 area of the roof and was sized as 40 kWp, the second used 109 m2 and was sized as 15.2 kWp. It was concluded that the reason for the low efficiency was the oversized design of the system. Incremental modernization efforts could help to improve the hydraulic system energy efficiency and make the design of the solar photovoltaic system realistically possible. Two types of PV systems where analyzed in the thesis work. A method was found calculating the load simulation sequence based on the energy efficiency studies to help in the PV system simulations. Hydraulic accumulators integrated into the pickling line worked as energy storage when being charged by the PV system as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the study is to develop a model for the energy balance of buildings that includes the effect from the radiation properties of interior and exterior surfaces of the building envelope. As a first step we have used ice arenas as case study objects to investigate the importance of interior low emissivity surfaces. Measurements have been done in two ice arenas in the north part of Sweden, one with lower and one with higher ceiling emissivity. The results show that the low emissivity ceiling gives a much lower radiation temperature interacting with the ice under similar conditions. The dynamic modelling of the roof in ice arenas shows a similar dependence of the roof-to-ice heat flux and the ceiling emissivity.A second part of the study focus on how to realise paints with very low thermal emissivity to be used on interior building surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pilot versions of a solar heating/natural gas burner system, of a solar heating/pellet burner system and of a façade/roof integrated polymeric collector have been installed in the summer of 2006 in a number of demonstration houses in Denmark, Sweden and Norway.These three new products have been evaluated by means of measurements of the thermal performance and energy savings of the pilot systems in practice and by means of a commercial evaluation.The conclusion of the evaluations is that the products are attractive for the industry partners METRO THERM A/S, Solentek and SOLARNOR. It is expected that the companies will bring the products into the market in 2007.Further, the results of the project have been presented atinternational and national congresses and seminars for the solar heating branch. The congresses and seminars attracted a lot of interested participants.Furthermore, the project results have been published in international congress papers as well as in national journals in the energy field.Consequently, the Nordic solar heating industry will benefit from the project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar energy is used for space heating, and DHW production using PV modules which supply direct current directly to electrical heating elements inside a water storage tank. On the other hand a GSHP system as another source of renewable energy provides heat in the water storage tank of the system in order to provide DHW and space heating. These two sources of renewable energy have been combined in this case-study in order to obtain a more efficient system, which will reduce the amount of electricity consumed by the GSHP system.The key aim of this study is to make simulations, and calculations of the amount ofelectrical energy that can be expected to be produced by a certain amount of PV modules that are already assembled on a house in Vantaa, southern Finland. This energy is then intended to be used as a complement to produce hot water in the heating system of the house beside the original GSHP system. Thus the amount of electrical energy purchased from the grid should be reduced and the compressor in the GSHP would need fewer starts which would reduce the heating cost of the GSHP system for space heating and providing hot water.The produced energy by the PV arrays in three different circuits will be charged directly to three electrical heating elements in the water storage tank of the existing system to satisfy the demand of the heating elements. The excess energy can be used to heat the water in the water storage tank to some extent which leads to a reduction of electricity consumption by the different components of the GSHP system.To increase the efficiency of the existing hybrid system, optimization of different PV configurations have been accomplished, and the results are compared. Optimization of the arrays in southern and western walls shows a DC power increase of 298 kWh/year compared with the existing PV configurations. Comparing the results from the optimization of the arrays on the western roof if the intention is to feed AC power to the components of the GSHP system shows a yearly AC power production of 1,646 kWh.This is with the consideration of no overproduction by the PV modules during the summer months. This means the optimized PV systems will be able to cover a larger part of summer demand compared with the existing system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduction of household energy consumption is one of the top issues in contemporary discussions on sustainable consumption. This chapter concerns one way through which consumption of purchased energy for house heating can be reduced; by having a solar thermal system added to one's house. However, the fact that one of the components - the solar collector - usually is situated on the roof or the facade of a building, is a recurrent impediment to such installations. In certain contexts, these attributes may melt into the building, while in others, they may be perceived as problematic. The latter may particularly be the case when the appearance of the building is of major imiportance, as with houses deemed worthy of preservation for coming generations. This chapter draws upon a study carried out in Visby Town, a walled Hanseatic town and a World Heritage site on the island of Gotland, Sweden.