956 resultados para Robot vision systems
                                
Resumo:
Spiking neural networks are usually limited in their applications due to their complex mathematical models and the lack of intuitive learning algorithms. In this paper, a simpler, novel neural network derived from a leaky integrate and fire neuron model, the ‘cavalcade’ neuron, is presented. A simulation for the neural network has been developed and two basic learning algorithms implemented within the environment. These algorithms successfully learn some basic temporal and instantaneous problems. Inspiration for neural network structures from these experiments are then taken and applied to process sensor information so as to successfully control a mobile robot.
                                
Resumo:
Food is fundamental to human wellbeing and development. Increased food production remains a cornerstone strategy in the effort to alleviate global food insecurity. But despite the fact that global food production over the past half century has kept ahead of demand, today around one billion people do not have enough to eat, and a further billion lack adequate nutrition. Food insecurity is facing mounting supply-side and demand-side pressures; key among these are climate change, urbanisation, globalisation, population increases, disease, as well as a number of other factors that are changing patterns of food consumption. Many of the challenges to equitable food access are concentrated in developing countries where environmental pressures including climate change, population growth and other socio-economic issues are concentrated. Together these factors impede people's access to sufficient, nutritious food; chiefly through affecting livelihoods, income and food prices. Food security and human development go hand in hand, and their outcomes are co-determined to a significant degree. The challenge of food security is multi-scalar and cross-sector in nature. Addressing it will require the work of diverse actors to bring sustained improvements inhuman development and to reduce pressure on the environment. Unless there is investment in future food systems that are similarly cross-level, cross-scale and cross-sector, sustained improvements in human wellbeing together with reduced environmental risks and scarcities will not be achieved. This paper reviews current thinking, and outlines these challenges. It suggests that essential elements in a successfully adaptive and proactive food system include: learning through connectivity between scales to local experience and technologies high levels of interaction between diverse actors and sectors ranging from primary producers to retailers and consumers, and use of frontier technologies.
                                
Resumo:
This paper provides some additional evidence in support of the hypothesis that robot therapies are clinically beneficial in neurorehabilitation. Although only 4 subjects were included in the study, the design of the intervention and the measures were done so as to minimise bias. The results are presented as single case studies, and can only be interpreted as such due to the study size. The intensity of intervention was 16 hours and the therapy philosophy (based on Carr and Shepherd) was that coordinated movements are preferable to joint based therapies, and that coordinating distal movements (in this case grasps) helps not only to recover function in these areas, but has greater value since the results are immediately transferable to daily skills such as reach and grasp movements.
                                
Resumo:
Awareness of emerging situations in a dynamic operational environment of a robotic assistive device is an essential capability of such a cognitive system, based on its effective and efficient assessment of the prevailing situation. This allows the system to interact with the environment in a sensible (semi)autonomous / pro-active manner without the need for frequent interventions from a supervisor. In this paper, we report a novel generic Situation Assessment Architecture for robotic systems directly assisting humans as developed in the CORBYS project. This paper presents the overall architecture for situation assessment and its application in proof-of-concept Demonstrators as developed and validated within the CORBYS project. These include a robotic human follower and a mobile gait rehabilitation robotic system. We present an overview of the structure and functionality of the Situation Assessment Architecture for robotic systems with results and observations as collected from initial validation on the two CORBYS Demonstrators.
                                
Resumo:
During the past decade, brain–computer interfaces (BCIs) have rapidly developed, both in technological and application domains. However, most of these interfaces rely on the visual modality. Only some research groups have been studying non-visual BCIs, primarily based on auditory and, sometimes, on somatosensory signals. These non-visual BCI approaches are especially useful for severely disabled patients with poor vision. From a broader perspective, multisensory BCIs may offer more versatile and user-friendly paradigms for control and feedback. This chapter describes current systems that are used within auditory and somatosensory BCI research. Four categories of noninvasive BCI paradigms are employed: (1) P300 evoked potentials, (2) steady-state evoked potentials, (3) slow cortical potentials, and (4) mental tasks. Comparing visual and non-visual BCIs, we propose and discuss different possible multisensory combinations, as well as their pros and cons. We conclude by discussing potential future research directions of multisensory BCIs and related research questions
                                
Resumo:
The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.
                                
Resumo:
Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.
                                
Resumo:
Com o intuito de utilizar uma rede com protocolo IP para a implementação de malhas fechadas de controle, este trabalho propõe-se a realizar um estudo da operação de um sistema de controle dinâmico distribuído, comparando-o com a operação de um sistema de controle local convencional. Em geral, a decisão de projetar uma arquitetura de controle distribuído é feita baseada na simplicidade, na redução dos custos e confiabilidade; portanto, um diferencial bastante importante é a utilização da rede IP. O objetivo de uma rede de controle não é transmitir dados digitais, mas dados analógicos amostrados. Assim, métricas usuais em redes de computadores, como quantidade de dados e taxa de transferências, tornam-se secundárias em uma rede de controle. São propostas técnicas para tratar os pacotes que sofrem atrasos e recuperar o desempenho do sistema de controle através da rede IP. A chave para este método é realizar a estimação do conteúdo dos pacotes que sofrem atrasos com base no modelo dinâmico do sistema, mantendo o sistema com um nível adequado de desempenho. O sistema considerado é o controle de um manipulador antropomórfico com dois braços e uma cabeça de visão estéreo totalizando 18 juntas. Os resultados obtidos mostram que se pode recuperar boa parte do desempenho do sistema.
                                
Resumo:
NOGUEIRA, Marcelo B. ; MEDEIROS, Adelardo A. D. ; ALSINA, Pablo J. Pose Estimation of a Humanoid Robot Using Images from an Mobile Extern Camera. In: IFAC WORKSHOP ON MULTIVEHICLE SYSTEMS, 2006, Salvador, BA. Anais... Salvador: MVS 2006, 2006.
                                
Resumo:
The development of robots has shown itself as a very complex interdisciplinary research field. The predominant procedure for these developments in the last decades is based on the assumption that each robot is a fully personalized project, with the direct embedding of hardware and software technologies in robot parts with no level of abstraction. Although this methodology has brought countless benefits to the robotics research, on the other hand, it has imposed major drawbacks: (i) the difficulty to reuse hardware and software parts in new robots or new versions; (ii) the difficulty to compare performance of different robots parts; and (iii) the difficulty to adapt development needs-in hardware and software levels-to local groups expertise. Large advances might be reached, for example, if physical parts of a robot could be reused in a different robot constructed with other technologies by other researcher or group. This paper proposes a framework for robots, TORP (The Open Robot Project), that aims to put forward a standardization in all dimensions (electrical, mechanical and computational) of a robot shared development model. This architecture is based on the dissociation between the robot and its parts, and between the robot parts and their technologies. In this paper, the first specification for a TORP family and the first humanoid robot constructed following the TORP specification set are presented, as well as the advances proposed for their improvement.
                                
Resumo:
This work proposes a method to determine the depth of objects in a scene using a combination between stereo vision and self-calibration techniques. Determining the rel- ative distance between visualized objects and a robot, with a stereo head, it is possible to navigate in unknown environments. Stereo vision techniques supply a depth measure by the combination of two or more images from the same scene. To achieve a depth estimates of the in scene objects a reconstruction of this scene geometry is necessary. For such reconstruction the relationship between the three-dimensional world coordi- nates and the two-dimensional images coordinates is necessary. Through the achievement of the cameras intrinsic parameters it is possible to make this coordinates systems relationship. These parameters can be gotten through geometric camera calibration, which, generally is made by a correlation between image characteristics of a calibration pattern with know dimensions. The cameras self-calibration allows the achievement of their intrinsic parameters without using a known calibration pattern, being possible their calculation and alteration during the displacement of the robot in an unknown environment. In this work a self-calibration method based in the three-dimensional polar coordinates to represent image features is presented. This representation is determined by the relationship between images features and horizontal and vertical opening cameras angles. Using the polar coordinates it is possible to geometrically reconstruct the scene. Through the proposed techniques combination it is possible to calculate a scene objects depth estimate, allowing the robot navigation in an unknown environment
                                
Resumo:
A challenge that remains in the robotics field is how to make a robot to react in real time to visual stimulus. Traditional computer vision algorithms used to overcome this problem are still very expensive taking too long when using common computer processors. Very simple algorithms like image filtering or even mathematical morphology operations may take too long. Researchers have implemented image processing algorithms in high parallelism hardware devices in order to cut down the time spent in the algorithms processing, with good results. By using hardware implemented image processing techniques and a platform oriented system that uses the Nios II Processor we propose an approach that uses the hardware processing and event based programming to simplify the vision based systems while at the same time accelerating some parts of the used algorithms
                                
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
                                
Resumo:
Mobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.
                                
Resumo:
This paper aims at describing an educational system for teaching and learning robotic systems. Multimedia resources were used to construct a virtual laboratory where users are able to use functionalities of a virtual robotic arm, by moving and clicking the mouse without caring about the detailed internal robot operation. Moreover through the multimedia system the user can interact with a real robot arm. The engineering students are the target public of the developed system. With its contents and interactive capabilities, it has been used as a support to the traditional face-to-face classes on the subject of robotics.. In the paper it is first introduced the metaphor of Virtual Laboratory used in the system. Next, it is described the Graphical and Multimedia Environment approach: an interactive graphic user interface with a 3D environment for simulation. Design and implementation issues of the real-time interactive multimedia learning system, which supports the W3C SMIL standard for presenting the real-time multimedia teaching material, are described. Finally, some preliminary conclusions and possible future works from this research are presented.
 
                    