936 resultados para Robot control
Resumo:
Smooth trajectories are essential for safe interaction in between human and a haptic interface. Different methods and strategies have been introduced to create such smooth trajectories. This paper studies the creation of human-like movements in haptic interfaces, based on the study of human arm motion. These motions are intended to retrain the upper limb movements of patients that lose manipulation functions following stroke. We present a model that uses higher degree polynomials to define a trajectory and control the robot arm to achieve minimum jerk movements. It also studies different methods that can be driven from polynomials to create more realistic human-like movements for therapeutic purposes.
Resumo:
A robot mounted camera is useful in many machine vision tasks as it allows control over view direction and position. In this paper we report a technique for calibrating both the robot and the camera using only a single corresponding point. All existing head-eye calibration systems we have encountered rely on using pre-calibrated robots, pre- calibrated cameras, special calibration objects or combinations of these. Our method avoids using large scale non-linear optimizations by recovering the parameters in small dependent groups. This is done by performing a series of planned, but initially uncalibrated robot movements. Many of the kinematic parameters are obtained using only camera views in which the calibration feature is at, or near the image center, thus avoiding errors which could be introduced by lens distortion. The calibration is shown to be both stable and accurate. The robotic system we use consists of camera with pan-tilt capability mounted on a Cartesian robot, providing a total of 5 degrees of freedom.
Resumo:
A three degrees of freedom industrial robot is controlled by applying PID self-tuning (PID/ST) controllers. This control is considered as a corrective term to a nominal value, centrally computed from an inaccurate and/ or simplified dynamic model. An identification scheme on an assumed linear plant describing the deviation from the desired trajectory is employed in order to tune the controller coefficients and thus accomplish a behaviour prescribed through a desired pole placement. A salient feature of our approach is the decentralized nature of the controllers producing the corrective term for each joint. This opens the way to practical implementation, as recent computing requirement calculations for similar set-ups have shown in the literature. Numerical results are presented.
Resumo:
The existence of a specialized imitation module in humans is hotly debated. Studies suggesting a specific imitation impairment in individuals with autism spectrum disorders (ASD) support a modular view. However, the voluntary imitation tasks used in these studies (which require socio-cognitive abilities in addition to imitation for successful performance) cannot support claims of a specific impairment. Accordingly, an automatic imitation paradigm (a ‘cleaner’ measure of imitative ability) was used to assess the imitative ability of 16 adults with ASD and 16 non-autistic matched control participants. Participants performed a prespecified hand action in response to observed hand actions performed either by a human or a robotic hand. On compatible trials the stimulus and response actions matched, while on incompatible trials the two actions did not match. Replicating previous findings, the Control group showed an automatic imitation effect: responses on compatible trials were faster than those on incompatible trials. This effect was greater when responses were made to human than to robotic actions (‘animacy bias’). The ASD group also showed an automatic imitation effect and a larger animacy bias than the Control group. We discuss these findings with reference to the literature on imitation in ASD and theories of imitation.
Resumo:
Active robot force control requires some form of dynamic inner loop control for stability. The author considers the implementation of position-based inner loop control on an industrial robot fitted with encoders only. It is shown that high gain velocity feedback for such a robot, which is effectively stationary when in contact with a stiff environment, involves problems beyond the usual caveats on the effects of unknown environment stiffness. It is shown that it is possible for the controlled joint to become chaotic at very low velocities if encoder edge timing data are used for velocity measurement. The results obtained indicate that there is a lower limit on controlled velocity when encoders are the only means of joint measurement. This lower limit to speed is determined by the desired amount of loop gain, which is itself determined by the severity of the nonlinearities present in the drive system.
Resumo:
An experimental and theoretical comparison is made of force control performance with different types of innerloop joint servoing techniques. The problem of disturbance rejection and sensitivity to plant dynamics variations (robustness) is addressed. Position, velocity, strain gauge derived joint torque, and current servos are designed and implemented on a specially instrumented industrial robot, and the end-effector force feedback performances achieved are compared. Joint strain derived torque servoing is found to provide the best overall robust force control performance. Experimental results of the robust hard-on-hard contact achieved with the novel force controller implementation based on joint torque sensing are provided. Conclusions are drawn on the force control performance achievable on a geared robot given the joint servoing technique.
Resumo:
In this paper, we investigate the possibility to control a mobile robot via a sensory-motory coupling utilizing diffusion system. For this purpose, we implemented a simulation of the diffusion process of chemicals and the kinematics of the mobile robot. In comparison to the original Braitenberg vehicle in which sensorymotor coupling is tightly realised by hardwiring, our system employs the soft coupling. The mobile robot has two sets of independent sensory-motor unit, two sensors are implemented in front and two motors on each side of the robot. The framework used for the sensory-motor coupling was such that 1) Place two electrodes in the medium 2) Drop a certain amount of Chemical U and V related to the distance to the walls and the intensity of the light 3) Place other two electrodes in the medium 4) Measure the concentration of Chemical U and V to actuate the motors on both sides of the robot. The environment was constructed with four surrounding walls and a light source located at the center. Depending on the design parameters and initial conditions, the robot was able to successfully avoid the wall and light. More interestingly, the diffusion process in the sensory-motor coupling provided the robot with a simple form of memory which would not have been possible with a control framework based on a hard-wired electric circuit.
Resumo:
SANTANA, André M.; SOUZA, Anderson A. S.; BRITTO, Ricardo S.; ALSINA, Pablo J.; MEDEIROS, Adelardo A. D. Localization of a mobile robot based on odometry and natural landmarks using extended Kalman Filter. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 5., 2008, Funchal, Portugal. Proceedings... Funchal, Portugal: ICINCO, 2008.
Resumo:
Robotic vehicle navigation in unstructured and uncertain environments is still a challenge. This paper presents the implementation of a multivalued neurofuzzy controller for autonomous ground vehicle (AGVs) in indoor environments. The control system consists of a hierarchy of mobile robot using multivalued adaptive neuro-fuzzy inference system behaviors.
Resumo:
With the fast innovation of the hardware and software technologies using rapid prototyping devices, with application in the robotics and automation, more and more it becomes necessary the development of applications based on methodologies that facilitate future modifications, updates and enhancements in the original projected system. This paper presents a conception of mobile robots using rapid prototyping, distributing the several control actions in growing levels of complexity and using resources of reconfigurable computing proposal oriented to embed systems implementation. Software and the hardware are structuralized in independents blocks, with connection through common bus. The study and applications of new structures control that permits good performance in relation to the parameter variations. This kind of controller can be tested on different platform representing the wheeled mobile robots using reprogrammable logic components (FPGA). © 2006 IEEE.
Resumo:
Using robots for teaching is one approach that has gathered good results on Middle-School, High-School and Universities. Robotics gives chance to experiment concepts of a broad range of disciplines, principally those from Engineering courses and Computer Science. However, there are not many kits that enables the use of robotics in classroom. This article describes the methodologies to implement tools which serves as test beds for the use of robotics to teach Computer Science and Engineering. Therefore, it proposes the development of a flexible, low cost hardware to integrate sensors and control actuators commonly found on mobile robots, the development of a mobile robot device whose sensors and actuators allows the experimentation of different concepts, and an environment for the implementation of control algorithms through a computer network. This paper describes each one of these tools and discusses the implementation issues and future works. © 2010 IEEE.
Resumo:
A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for precision agriculture (PA). One of the major challenges in the design of these robots is the development of the electronic architecture for the control of the devices. In a joint project among research institutions and a private company in Brazil a multifunctional robotic platform for information acquisition in PA is being designed. This platform has as main characteristics four-wheel propulsion and independent steering, adjustable width, span of 1,80m in height, diesel engine, hydraulic system, and a CAN-based networked control system (NCS). This paper presents a NCS solution for the platform guidance by the four-wheel hydraulic steering distributed control. The control strategy, centered on the robot manipulators control theory, is based on the difference between the desired and actual position and considering the angular speed of the wheels. The results demonstrate that the NCS was simple and efficient, providing suitable steering performance for the platform guidance. Even though the simplicity of the NCS solution developed, it also overcame some verified control challenges in the robot guidance system design such as the hydraulic system delay, nonlinearities in the steering actuators, and inertia in the steering system due the friction of different terrains. Copyright © 2012 Eduardo Pacincia Godoy et al.
Resumo:
This work presents the development and integration of an user interface (UI) framework based on various current input devices that take advantage of our ergonomics. The purpose is to teleoperate a holonomic robot using upper member gestures and postures for studying the suitable of such interfaces when programming and interacting with a mobile robot. As performance vary from UI to UI the framework is focused to be used as a complementary industrial or didactic tool thus, changing how inexperience users tackle their first impressions when working with mobile robots while performing simple gesture-based teleoperation tasks. © 2012 ICROS.
Resumo:
A robotic control design considering all the inherent nonlinearities of the robot-engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State-Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case I: For control positioning, it is only used motor voltage; Case II: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.