944 resultados para Retina : Patologia
Resumo:
An optical coherence tomography (OCT) system to produce both longitudinal and transversal images of the in vivo human eye is presented. For the first time, OCT transversal images collected from the living eye at 50-µm depth steps show details unobtainable with the state-of-the-art scanning laser ophthalmoscope. Images of up to 3×3?mm are produced from the retina in less than a second. For images larger than 1.6×1.6?mm, a path modulation is introduced by the galvanometric scanning mirror and is used as an effective phase modulation method.
Resumo:
We show that with a fiberized multiple Michelson-interferometer-type configuration, transverse images from several layers in the human eye can be simultaneously obtained. We demonstrate the principle by producing simultaneous 100×100 pixel en-face images of a 4 mm×4 mm region on a postmortem retina for two depth positions 250 µm apart.
Resumo:
We examined the intrinsic signals in response to grating stimuli in order to determine whether the light-evoked intrinsic signals of the retina are due to changes in the photoreceptor activities induced by the image projected on to the retina or are due to neural activities of the inner retina. The retinas of the left eye of 12 cats under general anesthesia were examined by a functional imaging fundus camera. Near infrared light was used to monitor the reflectance changes (RCs) of the retina. Vertical grating were used to stimulate the retina at 4 Hz. The spatial frequencies of the gratings were 0.05, 0.11, 0.22, 0.43, 0.86, 1.73, and 3.46 cycles/degree (cpd). Ten images were averaged and used to analyze the RCs to obtain the peak value (PV) of a two dimensional fast Fourier transfer of the RCs. The wavefront aberrations (WA) were measured with a compact wavefront aberrometer and the spatial modulation transfer function (MTF) of the eye was calculated. The retinal reflectance image had a grating pattern. The PV of the spatial sensitivity curve was highest at low spatial frequencies (0.05 and 0.11 cpd), and the sensitivity decreased steeply with an increase in the spatial frequency. RCs were not detectable at 3.46 cpd. The MTF decreased gradually with increases in the spatial frequencies and was 0.68 at 3.46 cpd. The reflectance pattern of the retinal intrinsic signal elicited by grating stimuli of different spatial frequencies was different from that of the MTF. This suggests that the intrinsic signal represents not only the response of the photoreceptors but also other neuronal or vascular changes in the retina.
Resumo:
The quarter century since the foundation of the Royal College of Ophthalmologists has coincided with immense change in the subspecialty of medical retina, which has moved from being the province of a few dedicated enthusiasts to being an integral, core part of ophthalmology in every eye department. In age-related macular degeneration, there has been a move away from targeted, destructive laser therapy, dependent on fluorescein angiography to intravitreal injection therapy of anti-growth factor agents, largely guided by optical coherence tomography. As a result of these changes, ophthalmologists have witnessed a marked improvement in visual outcomes for their patients with wet age-related macular degeneration (AMD), while at the same time developing and enacting entirely novel ways of delivering care. In the field of diabetic retinopathy, this period also saw advances in laser technology and a move away from highly destructive laser photocoagulation treatment to gentler retinal laser treatments. The introduction of intravitreal therapies, both steroids and anti-growth factor agents, has further advanced the treatment of diabetic macular oedema. This era has also seen in the United Kingdom the introduction of a coordinated national diabetic retinopathy screening programme, which offers an increasing hope that the burden of blindness from diabetic eye disease can be lessened. Exciting future advances in retinal imaging, genetics, and pharmacology will allow us to further improve outcomes for our patients and for ophthalmologists specialising in medical retina, the future looks very exciting but increasingly busy.
Resumo:
We show that with a fiberized multiple Michelson-interferometer-type configuration, transverse images from several layers in the human eye can be simultaneously obtained. We demonstrate the principle by producing simultaneous 100×100 pixel en-face images of a 4 mm×4 mm region on a postmortem retina for two depth positions 250 µm apart.
Resumo:
An optical coherence tomography (OCT) system to produce both longitudinal and transversal images of the in vivo human eye is presented. For the first time, OCT transversal images collected from the living eye at 50-µm depth steps show details unobtainable with the state-of-the-art scanning laser ophthalmoscope. Images of up to 3×3?mm are produced from the retina in less than a second. For images larger than 1.6×1.6?mm, a path modulation is introduced by the galvanometric scanning mirror and is used as an effective phase modulation method.
Resumo:
Age-related macular degeneration (AMD) is the leading cause of blindness inAmerica. The fact that AMD wreaks most of the damage in the center of the retina raises the question of whether light, integrated over long periods, is more concentrated in the macula. A method, based on eye-tracking, was developed to measure the distribution of light in the retina under natural viewing conditions. The hypothesis was that integrated over time, retinal illumination peaked in the macula. Additionally a possible relationship between age and retinal illumination was investigated. The eye tracker superimposed the subject's gaze position on a video recorded by a scene camera. Five informed subjects were employed in feasibility tests, and 58 naïve subjects participated in 5 phases. In phase 1 the subjects viewed a gray-scale image. In phase 2, they observed a sequence of photographic images. In phase 3 they viewed a video. In phase 4, they worked on a computer; in phase 5, the subjects walked around freely. The informed subjects were instructed to gaze at bright objects in the field of view and then at dark objects. Naïve subjects were allowed to gaze freely for all phases. Using the subject's gaze coordinates, and the video provided by the scene camera, the cumulative light distribution on the retina was calculated for ∼15° around the fovea. As expected for control subjects, cumulative retinal light distributions peaked and dipped in the fovea when they gazed at bright or dark objects respectively. The light distribution maps obtained from the naïve subjects presented a tendency to peak in the macula for phases 1, 2, and 3, a consistent tendency in phase 4 and a variable tendency in phase 5. The feasibility of using an eye-tracker system to measure the distribution of light in the retina was demonstrated, thus helping to understand the role played by light exposure in the etiology of AMD. Results showed that a tendency for light to peak in the macula is a characteristic of some individuals and of certain tasks. In these situations, risk of AMD could be increased. No significant difference was observed based on age.