914 resultados para Respiratory disease


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The novel long-acting β2-agonist olodaterol demonstrated an acceptable safety profile in short-term phase II clinical studies. This analysis of four randomized, double-blind, placebo-controlled, parallel-group, phase III studies (1222.11, NCT00782210; 1222.12, NCT00782509; 1222.13, NCT00793624; 1222.14, NCT00796653) evaluated the long-term safety of olodaterol once daily (QD) in a large cohort of patients with moderate to very severe (Global initiative for chronic Obstructive Lung Disease 2-4) chronic obstructive pulmonary disease (COPD). The studies compared olodaterol (5 or 10 μg) QD via Respimat®, formoterol 12 μg twice daily (BID) via Aerolizer® (1222.13 and 1222.14), and placebo for 48 weeks. Patients continued receiving background maintenance therapy, with ∼60% receiving concomitant cardiovascular therapy and 25% having a history of concomitant cardiac disease. Pre-specified analyses of pooled data assessed the adverse events (AEs) and serious AEs in the whole population, and in subgroups with cardiac disease, along with in-depth electrocardiogram and Holter monitoring. In total, 3104 patients were included in the safety analysis: 876 received olodaterol 5 μg, 883 received olodaterol 10 μg, 885 received placebos, and 460 received formoterol 12 μg BID. Overall incidence of on-treatment AEs (71.2%), serious AEs (16.1%), and deaths (1.7%) were balanced across treatment groups. Respiratory and cardiovascular AEs, including major adverse cardiac events, were reported at similar frequencies in placebo and active treatment groups. The safety profiles of both olodaterol 5 μg (marketed and registered dose) and 10 μg QD delivered via Respimat® are comparable to placebo and formoterol BID in this population, with no safety signals identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants. Two subgroups (A and B) have been identified, which cocirculate during, or alternate between, yearly epidemics and cause indistinguishable disease. Existing in vitro and in vivo models of HRSV focus almost exclusively on subgroup A viruses. Here, a recombinant (r) subgroup B virus (rHRSV(B05)) was generated based on a consensus genome sequence obtained directly from an unpassaged clinical specimen from a hospitalized infant. An additional transcription unit containing the gene encoding enhanced green fluorescent protein (EGFP) was introduced between the phosphoprotein and matrix genes (position 5) of the genome to generate rHRSV(B05)EGFP(5). The recombinant viruses replicated efficiently in both HEp-2 cells and in well-differentiated normal human bronchial cells grown at air-liquid interface. Intranasal infection of cotton rats (Sigmodon hispidus) resulted in high numbers of EGFP(+) cells in epithelia of the nasal septum and conchae. When administered in a relatively large inoculum volume, the virus also replicated efficiently in bronchiolar epithelial cells and spread extensively in both the upper and lower respiratory tracts. Virus replication was not observed in ciliated epithelial cells of the trachea. This is the first virulent rHRSV strain with the genetic composition of a currently circulating wild-type virus. In vivo tracking of infected cells by means of EGFP fluorescence in the absence of cytopathic changes increases the sensitivity of virus detection in HRSV pathogenesis studies.

IMPORTANCE

Virology as a discipline has depended on monitoring cytopathic effects following virus culture in vitro. However, wild-type viruses isolated from patients often do not cause significant changes to infected cells, necessitating blind passage. This can lead to genetic and phenotypic changes and the generation of high-titer, laboratory-adapted viruses with diminished virulence in animal models of disease. To address this, we determined the genome sequence of an unpassaged human respiratory syncytial virus from a sample obtained directly from an infected infant, assembled a molecular clone, and recovered a wild-type recombinant virus. Addition of a gene encoding enhanced green fluorescent protein allowed this wild-type virus to be tracked in primary human cells and living animals in the absence of significant cytopathic effects. Imaging of fluorescent cells proved to be a highly valuable tool for monitoring the spread of virus and may help improve assays for evaluating novel intervention strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute respiratory distress syndrome (ARDS) is a devastating disorder characterized by increased alveolar permeability with no effective treatment beyond supportive care. Current mechanisms underlying ARDS focus on alveolar endothelial and epithelial injury caused by products of innate immune cells and platelets. However, the role of adaptive immune cells in ARDS remains largely unknown. In this study, we report that expansion of Ag-specific αβTh17 cells contributes to ARDS by local secretion of IL-17A, which in turn directly increases alveolar epithelial permeability. Mice with a highly restrictive defect in Ag-specific αβTh17 cells were protected from experimental ARDS induced by a single dose of endotracheal LPS. Loss of IL-17 receptor C or Ab blockade of IL-17A was similarly protective, further suggesting that IL-17A released by these cells was responsible for this effect. LPS induced a rapid and specific clonal expansion of αβTh17 cells in the lung, as determined by deep sequencing of the hypervariable CD3RβVJ region of the TCR. Our findings could be relevant to ARDS in humans, because we found significant elevation of IL-17A in bronchoalveolar lavage fluid from patients with ARDS, and rIL-17A directly increased permeability across cultured human alveolar epithelial monolayers. These results reveal a previously unexpected role for adaptive immune responses that increase alveolar permeability in ARDS and suggest that αβTh17 cells and IL-17A could be novel therapeutic targets for this currently untreatable disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen that is an important cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). COPD is an inflammatory disease of the airways, and exacerbations are acute inflammatory events superimposed on this background of chronic inflammation. Azithromycin (AZM) is a macrolide antibiotic with antibacterial and anti-inflammatory properties and a clinically proven potential for AECOPD prevention and management. Relationships between AZM efficacy and resistance by NTHI and between bactericidal and immunomodulatory effects on NTHI respiratory infection have not been addressed. In this study, we employed two pathogenic NTHI strains with different AZM susceptibilities (NTHI 375 [AZM susceptible] and NTHI 353 [AZM resistant]) to evaluate the prophylactic and therapeutic effects of AZM on the NTHI-host interplay. At the cellular level, AZM was bactericidal toward intracellular NTHI inside alveolar and bronchial epithelia and alveolar macrophages, and it enhanced NTHI phagocytosis by the latter cell type. These effects correlated with the strain MIC of AZM and the antibiotic dose. Additionally, the effect of AZM on NTHI infection was assessed in a mouse model of pulmonary infection. AZM showed both preventive and therapeutic efficacies by lowering NTHI 375 bacterial counts in lungs and bronchoalveolar lavage fluid (BALF) and by reducing histopathological inflammatory lesions in the upper and lower airways of mice. Conversely, AZM did not reduce bacterial loads in animals infected with NTHI 353, in which case a milder anti-inflammatory effect was also observed. Together, the results of this work link the bactericidal and anti-inflammatory effects of AZM and frame the efficacy of this antibiotic against NTHI respiratory infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airway epithelium is the primary target of many respiratory viruses. However, virus induction and antagonism of host responses by human airway epithelium remains poorly understood. To address this, we developed a model of respiratory syncytial virus (RSV) infection based on well- differentiated pediatric primary bronchial epithelial cell cultures (WD-PBECs) that mimics hallmarks of RSV disease in infants. RSV is the most important respiratory viral pathogen in young infants worldwide. We found that RSV induces a potent antiviral state in WD-PBECs that was mediated in part by secreted factors, including interferon lambda-1 (IFNλ1)/IL-29. In contrast, type I interferons were not detected following RSV infection of WD-PBECs., Interferon (IFN) responses in RSV-infected WD-PBECs reflected those in lower airway samples from RSV-hospitalized infants. In view of the prominence of IL-29, we determined whether recombinant IL-29 treatment of WD-PBECs before or after infection abrogated RSV replication. Interestingly, IL-29 demonstrated prophylactic, but not therapeutic, potential against RSV. The absence of therapeutic potential reflected effective RSV antagonism of IFN-mediated antiviral responses in infected cells. Our data are consistent with RSV non-structural proteins 1 and/or 2 perturbing the Jak-STAT signaling pathway, with concomitant reduced expression of antiviral effector molecules, such as MxA/B. Antagonism of Jak-STAT signaling was restricted to RSV-infected cells in WD-PBEC cultures. Importantly, our study provides the rationale to further explore IL-29 as a novel RSV prophylactic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Respiratory Syncytial Virus (RSV) is an important causative agent of lower respiratory tract infections in infants and elderly. Its fusion (F) protein is critical for virus infection. It is targeted by several investigational antivirals and by palivizumab, a humanised monoclonal antibody used prophylactically in infants considered at high risk of severe RSV disease. ALX-0171 is a trimeric Nanobody that binds the antigenic site II of RSV F-protein with subnanomolar affinity. ALX-0171 demonstrated superior in vitro neutralisation compared to palivizumab against prototypic RSV A and B strains. Moreover, ALX-0171 completely blocked replication below limit of detection in 87% of the viruses tested versus 18% for palivizumab at a fixed concentration. Importantly, ALX-0171 was highly effective in reducing both nasal and lung RSV titers when delivered prophylactically or therapeutically directly to the lungs of cotton rats. ALX-0171 represents a potent novel antiviral compound with significant potential to treat RSV-mediated disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Therapies that are safe, effective, and not vulnerable to developing resistance are highly desirable to counteract bacterial infections. Host-directed therapeutics is an antimicrobial approach alternative to conventional antibiotics based on perturbing host pathways subverted by pathogens during their life cycle by using host-directed drugs. In this study, we identified and evaluated the efficacy of a panel of host-directed drugs against respiratory infection by nontypeable Haemophilus influenzae (NTHi). NTHi is an opportunistic pathogen that is an important cause of exacerbation of chronic obstructive pulmonary disease (COPD). We screened for host genes differentially expressed upon infection by the clinical isolate NTHi375 by analyzing cell whole-genome expression profiling and identified a repertoire of host target candidates that were pharmacologically modulated. Based on the proposed relationship between NTHi intracellular location and persistence, we hypothesized that drugs perturbing host pathways used by NTHi to enter epithelial cells could have antimicrobial potential against NTHi infection. Interfering drugs were tested for their effects on bacterial and cellular viability, on NTHi-epithelial cell interplay, and on mouse pulmonary infection. Glucocorticoids and statins lacked in vitro and/or in vivo efficacy. Conversely, the sirtuin-1 activator resveratrol showed a bactericidal effect against NTHi, and the PDE4 inhibitor rolipram showed therapeutic efficacy by lowering NTHi375 counts intracellularly and in the lungs of infected mice. PDE4 inhibition is currently prescribed in COPD, and resveratrol is an attractive geroprotector for COPD treatment. Together, these results expand our knowledge of NTHi-triggered host subversion and frame the antimicrobial potential of rolipram and resveratrol against NTHi respiratory infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutrophil elastase (NE), a biomarker of infection and inflammation, correlates with the severity of several respiratory diseases including chronic obstructive pulmonary disease (COPD). However, it’s detection and quantification in biological samples is confounded by a lack of reliable and robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex clinical samples containing multiple proteolytic and hydrolytic enzymes which have the ability to hydrolyse the substrate, thereby resulting in an over-estimation of the target protease. Furthermore, ELISA systems measure total protease levels which can be a mixture of latent, active and protease-inhibitor complexes. Therefore, we have developed a novel immunoassay (ProteaseTag™ Active NE Immunoassay) which is selective and specific for the capture of active NE in sputum and Bronchoalveolar Lavage (BAL) in patients with COPD. The objective of this study was to clinically validate ProteaseTag™ Active NE Ultra Immunoassay for the detection of NE in sputum from COPD patients. 20 matched sputum sol samples were collected from 10 COPD patients (M=6, F=4; 73 ± 6 years) during stable and exacerbation phases. Samples were assayed for NE activity utilising both ProteaseTag™ Active NE Ultra Immunoassay and a fluorogenic substrate-based kinetic activity assay. Both assays detected elevated levels of NE in the majority of patients (n=7) during an exacerbation (mean=217.2 μg/ml ±296.6) compared to their stable phase (mean=92.37 μg/ml ±259.8). However, statistical analysis did not show this difference to be significant (p=0.07, ProteaseTag™ Active NE Ultra Immunoassay; p=0.06 kinetic assay), most likely due to the low study number. A highly significant correlation was found between the 2 assay types (p≤0.0001, r=0.996). NE as a primary efficacy endpoint in clinical trials or as a marker of inflammation within the clinic has been hampered by the lack of a robust and simple to use assay. ProteaseTag™ Active NE Immunoassay specifically measures only active NE in clinical samples, is quick and easy to use (< 3 hours) and has no dependency on a kinetic readout. ProteaseTag™ technology is currently being transferred to a lateral flow device for use at Point of Care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure–volume curves and the pseudophaseplane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the measurement, frequency-response modeling and identification, and the corresponding impulse time response of the human respiratory impedance and admittance. The investigated adult patient groups were healthy, diagnosed with chronic obstructive pulmonary disease and kyphoscoliosis, respectively. The investigated children patient groups were healthy, diagnosed with asthma and cystic fibrosis, respectively. Fractional order (FO) models are identified on the measured impedance to quantify the respiratory mechanical properties. Two methods are presented for obtaining and simulating the time-domain impulse response from FO models of the respiratory admittance: (i) the classical pole-zero interpolation proposed by Oustaloup in the early 90s, and (ii) the inverse discrete Fourier Transform (DFT). The results of the identified FO models for the respiratory admittance are presented by means of their average values for each group of patients. Consequently, the impulse time response calculated from the frequency response of the averaged FO models is given by means of the two methods mentioned above. Our results indicate that both methods provide similar impulse response data. However, we suggest that the inverse DFT is a more suitable alternative to the high order transfer functions obtained using the classical Oustaloup filter. Additionally, a power law model is fitted on the impulse response data, emphasizing the intrinsic fractal dynamics of the respiratory system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the application of multidimensional scaling (MDS) analysis to data emerging from noninvasive lung function tests, namely the input respiratory impedance. The aim is to obtain a geometrical mapping of the diseases in a 3D space representation, allowing analysis of (dis)similarities between subjects within the same pathology groups, as well as between the various groups. The adult patient groups investigated were healthy, diagnosed chronic obstructive pulmonary disease (COPD) and diagnosed kyphoscoliosis, respectively. The children patient groups were healthy, asthma and cystic fibrosis. The results suggest that MDS can be successfully employed for mapping purposes of restrictive (kyphoscoliosis) and obstructive (COPD) pathologies. Hence, MDS tools can be further examined to define clear limits between pools of patients for clinical classification, and used as a training aid for medical traineeship.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure-volume curves and the pseudophase-plane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: In this prospective, multicenter, 14-day inception cohort study, we investigated the epidemiology, patterns of infections, and outcome in patients admitted to the intensive care unit (ICU) as a result of severe acute respiratory infections (SARIs). METHODS: All patients admitted to one of 206 participating ICUs during two study weeks, one in November 2013 and the other in January 2014, were screened. SARI was defined as possible, probable, or microbiologically confirmed respiratory tract infection with recent onset dyspnea and/or fever. The primary outcome parameter was in-hospital mortality within 60 days of admission to the ICU. RESULTS: Among the 5550 patients admitted during the study periods, 663 (11.9 %) had SARI. On admission to the ICU, Gram-positive and Gram-negative bacteria were found in 29.6 and 26.2 % of SARI patients but rarely atypical bacteria (1.0 %); viruses were present in 7.7 % of patients. Organ failure occurred in 74.7 % of patients in the ICU, mostly respiratory (53.8 %), cardiovascular (44.5 %), and renal (44.6 %). ICU and in-hospital mortality rates in patients with SARI were 20.2 and 27.2 %, respectively. In multivariable analysis, older age, greater severity scores at ICU admission, and hematologic malignancy or liver disease were independently associated with an increased risk of in-hospital death, whereas influenza vaccination prior to ICU admission and adequate antibiotic administration on ICU admission were associated with a lower risk. CONCLUSIONS: Admission to the ICU for SARI is common and associated with high morbidity and mortality rates. We identified several risk factors for in-hospital death that may be useful for risk stratification in these patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.