834 resultados para Resíduos agroindustriais - Propriedades físicas
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O uso de resíduos agroindustriais pode acumular metais pesados no solo e na planta. O objetivo deste trabalho foi avaliar os efeitos do lodo de esgoto e/ou vinhaça, aplicados no solo, disponibilizando Cd, Cr, Ni e Pb ao solo e quantificar as respectivas concentrações em plantas de cana-de-açúcar, após três aplicações anuais sucessivas. O experimento foi conduzido em condições de campo, com parcelas experimentais de cinco linhas espaçadas de 1,5 m e 10 m de comprimento. O delineamento experimental adotado foi o de blocos casualizados, com três repetições. Os tratamentos avaliados foram: 1. Lodo de esgoto com 100% de N; 2. Lodo de esgoto com 200% de N; 3. Vinhaça com 100% de K; 4. Vinhaça com 200% de K; 5. Lodo de esgoto+vinhaça com 100% de N e K; 6. Lodo de esgoto+vinhaça com 200% de N e K; 7. Testemunha (fertilização mineral). Os baixos teores de metais pesados (Cd, Cr, Ni e Pb) disponíveis no solo e nas partes das plantas de cana-de-açúcar indicam que o lodo de esgoto e a vinhaça, empregados nas doses mencionadas, não apresentaram, após três aplicações anuais sucessivas, potencial de contaminação do sistema solo-planta.
Resumo:
Este trabalho teve como objetivo avaliar, em condições de campo, a resposta de duas cultivares de milho com características genéticas distintas em Latossolo Vermelho em seis níveis de compactação. O experimento foi conduzido em faixas, no delineamento de blocos completos casualizados, com quatro repetições. Utilizaram-se os híbridos de milho DKB 390 e DAS 2B710. Após a semeadura do milho, coletaram-se amostras indeformadas de solo nas profundidades de 0-10, 10-20 e 20-30 cm, para determinação de propriedades físicas do solo e índice S. No estádio de maturidade fisiológica dos grãos do milho, foram determinados: a altura das plantas, a altura de inserção da primeira espiga, o diâmetro do segundo colmo acima do solo e a massa de matéria seca das plantas. As espigas foram colhidas e debulhadas para determinação da produtividade de grãos, corrigida para a umidade-padrão de 13 %, calculando-se também o número de espigas por planta e o índice de colheita. O índice S apresentou correlação positiva com a produtividade, porém, abaixo do limite de S < 0,035, estabelecido para uma condição de solo desestruturado, ocorreram perdas acentuadas na produtividade de milho. Os híbridos simples de milho DKB 390 e DAS 2B710 não apresentaram diferenças quando submetidos aos diferentes níveis de compactação. A produtividade dos híbridos de milho foi significativamente menor quando a resistência do solo à penetração atingiu 2,15 MPa.
Resumo:
O desmatamento da floresta tropical da Amazônia e a utilização do solo para fins agrícolas potencializam sua degradação física, química e biológica, quando realizados de forma inadequada. Este estudo teve o objetivo de avaliar o efeito de sistemas de uso e manejo de um Latossolo Amarelo, muito argiloso, mediante avaliações de atributos físicos determinados nas profundidades de 0,0-0,2 e 0,2-0,4 m, em área da Universidade do Amazonas, Manaus (AM). Os sistemas de uso e manejo foram: milho, laranja, pupunha, guaraná, pastagem, capoeira e floresta. Nos sistemas com milho, laranja, pupunha e pastagem, foram realizados o desmatamento, a queima e as operações de preparo e cultivo mecanizados. Foram avaliados a composição granulométrica, o grau de floculação da argila, o teor de matéria orgânica, a densidade de partículas, a densidade do solo, a porosidade total, a macro e microporosidade, e a infiltrações inicial e básica. Utilizou-se o delineamento experimental inteiramente casualizado, com três repetições. Os agroecossistemas, em ordem crescente: capoeira, guaraná, milho, laranja, pupunha e pastagem induziram uma degradação dos atributos físicos do solo cultivado em relação ao de floresta, quantificada pelos maiores valores de densidade do solo e menores de macroporosidade, infiltração de água e matéria orgânica.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este trabalho teve como objetivo avaliar, no campo, a resposta de duas cultivares de milho em um Latossolo Vermelho, em seis níveis de compactação, quanto ao desenvolvimento do sistema radicular, bem como caracterizar a compactação do solo a partir do intervalo hídrico ótimo (IHO). O experimento foi realizado em faixas, no delineamento de blocos completos casualizados, com quatro repetições. Utilizaram-se os híbridos de milho DKB 390 e DAS 2B710. Após a semeadura do milho, coletaram-se amostras indeformadas de solo para a determinação de propriedades físicas do solo e do IHO. No estádio do pendoamento do milho, retiraram-se três amostras por parcela na entrelinha, nas profundidades de 0-10, 10-20 e 20-30 cm, em cada parcela, para determinação de diâmetro médio, densidade do comprimento radicular e massa de matéria seca das raízes. O IHO foi igual a zero quando o solo atingiu a densidade crítica de 1,46 kg dm-3, correspondente a 92 % da densidade máxima do solo. Com a compactação, houve aumento da produção de matéria seca das raízes, da densidade do comprimento radicular e do diâmetro radicular e na profundidade de 0-10 cm, o aumento da massa de matéria seca e da densidade radicular se dá até a resistência do solo à penetração de 1,23 e 1,43 MPa, respectivamente. Houve correlação negativa entre a massa de matéria seca, a densidade e o diâmetro radicular com a produtividade do milho irrigado, mostrando que essas variáveis são bons indicadores da compactação do solo.
Resumo:
Objetivou-se avaliar o grau de modificação de algumas propriedades físicas e da cor do horizonte superficial de um Latossolo Vermelho-Escuro textura média, submetido ao cultivo contínuo com cana-de-açúcar durante 25 anos, em Jaboticabal, SP. Os tratamentos foram constituídos por dois tipos de uso do solo, ou seja, ausência de cultivo (vegetação nativa) e cultivo intenso com cana-de-açúcar e por três profundidades no perfil, 0-10, 10-20 e 20-30cm. O cultivo intenso e contínuo alterou a cor do solo na camada de 0-10cm de 2,5YR 2,5/4 na ausência de cultivo para 2,5YR3/4 e degradou a macroestrutura, reduzindo o grau de floculação da argila do solo.
Resumo:
The advantages of the use of vegetable fibers on the synthetic fibers, such as glass fibers, in the reinforcements in composites are: low cost, low density, good tenacity, good thermal properties and reduced use of instruments for their treatment or processing. However, problems related to poor performance of some mechanical natural fibers, have hindered its direct use in structural elements. In this sense, the emergence of alternative materials such as hybrids composites, involving natural and synthetic fibers, has been encouraged by seeking to improve the performance of structural composites based only on natural fibers. The differences between the physical, chemical and mechanical properties of these fibers, especially facing the adverse environmental conditions such as the presence of moisture and ultraviolet radiation, is also becoming a concern in the final response of these composites. This piece of research presents a comparative study of the strength and stiffness between two composite, both of ortoftalic polyester matrix, one reinforced with fibers of glass-E (CV) and other hybrid reinforced with natural fibers of curauá and fiberglass-E (CH). All the comparative study is based on the influence of exposure to UV rays and steam heated water in composites, simulating the aging environment. The conditions for the tests are accelerated through the use of the aging chamber. The composites will be evaluated through tests of uniaxial static mechanical traction and bending on three points. The composite of glass fiber and hybrid manufacturing industry are using the rolling manual (hand lay-up) and have been developed in the form of composites. All were designed to meet possible structural applications such as tanks and pipes. The reinforcements used in composites were in the forms of short fiber glass-E quilts (450g/m2 - 5cm) of continuous wires and fuses (whose title was of 0.9 dtex) for the curauá fibers. The results clearly show the influence of aging on the environmental mechanical performance of the composite CV and CH. The issues concerning the final characteristics of the fracture for all types of cargoes studied were also analyzed
Resumo:
This research is based, at first, on the seeking of alternatives naturals reinforced in place of polymeric composites, also named reinforced plastics. Therein, this work starts with a whole licuri fiber micro structural characterization, as alternative proposal to polymeric composites. Licuri fiber is abundant on the Bahia state flora, native from a palm tree called Syagrus Coronata (Martius) Beccari. After, it was done only licuri fiber laminar composite developing studies, in order to know its behavior when impregnated with thermofix resin. The composite was developed in laminar structure shape (plate with a single layer of reinforcement) and produced industrially. The layer of reinforcement is a fabric-fiber unidirectional of licuri up in a manual loom. Their structure was made of polyester resin ortofitálica (unsaturated) only reinforced with licuri fibers. Fiber characterization studies were based on physical chemistry properties and their constitution. It was made by tension, scanning electron microscopy (SEM), x-ray diffraction (RDX) and thermal analyses (TG and DTA) tests, besides fiber chemistry analyses. Relating their mechanical properties of strength and hardness testing, they were determined through unit axial tension test and flexion in three points. A study in order to know fiber/matrix interface effects, in the final composites results, was required. To better understand the mechanical behavior of the composite, macroscopic and microscopic optical analysis of the fracture was performed
Resumo:
The industries of structural ceramics are among the most important production chains in the state of Rio Grande do Norte. The industry and other interest groups to target the replacement of firewood by natural gas. Studies accordingly concluded that simple change does not guarantee products of superior quality, and that the increase in spending on fuel can economically cripple the use of gas for burning the majority of products manufactured by that action. However some proposals of innovations in terms of process and product are being studied in an attempt to justify the use of natural gas in industry, structural ceramics. One of the aspects investigated is the development of ceramic products differentiated, with new designs and greater value added. Inserted in that context, this paper aims to investigate the potential use of clay-firing clear fabrication of the "bricks of apparent joins drought", a new ceramic product with an innovative way. The development of the work was done in three stages. In the initial stage was held the characterization of raw materials, sought information on physical, chemical, mineralogical and mechanical samples. In the second stage five bodies were made using two of the nine ceramic clay characterized the first step. The masses were analyzed and compared with respect to the size distribution, plasticity and technological properties. In the last part of this work was carried out tests on massive bricks manufactured on an industrial scale. The results show that the nine clays can be used in the manufacture of new ceramic products, is the only constituent of mass ceramic or by mixing with other(s) clay(s
Resumo:
The obtaining of ceramic materials from polymeric precursors is subject of numerous studies due to lower energy costs compared to conventional processing. The aim of this study is to investigate and improve the mechanism for obtaining ceramic matrix composite (CMC) based on SiOC/Al2O3/TiC by pyrolysis of polysiloxane in the presence of an active filler and inert filler in the pyrolysis temperature lower than the usually adopted for this technique, with greater strength. It also investigates the influence of pyrolysis temperature, the content of Alas active filler, the presence of infiltrating agents (Al, glass and polymer) after pyrolysis, temperature and infiltration time on some physical and mechanical properties. Alumina is used as inert filler and Al and Ti as active filler in the pyrolysis. Aluminum, glass and polysiloxane are used as agents infiltrating the post-pyrolysis. The results are analyzed with respect to porosity and bulk density by the Archimedes method, the presence of crystalline phases by X-ray diffraction (XRD) and microstructure by scanning electron microscopy (SEM). The ceramic pyrolyzed between 850 °C 1400 °C contain porosity 15% to 33%, density 2.34 g/cm3 and flexural strength at 4 points from 30 to 42 MPa. The microstructure features are porous, with an array of Al2O3 reinforced by TiC particles and AlTi3. The infiltration post-pyrolysis reveals decrease in porosity and increase density and strength. The composites have potential applications where thermal stability is the main requirement
Resumo:
In this work, it is proposed the study of the effect of barium oxide acting as synthetic flow in the behavior of masses for stoneware from the use of raw materials found in the deposits of minerals of the Rio Grande do Norte that it makes use of a great natural potential for the industrialization of the product. The porcelanato is a sophisticated product with excellent final properties being applied as ceramic coating in buildings of high standard of engineering. The raw materials selected for the development of the study had been two types of argilas, two types of feldspatos, dolomita, talco, barium carbonate and silica, being characterized by X-ray fluorescence, X-ray diffraction, granulometric analysis, dilatometric analysis and thermal analysis. Thus, it is intended to define four formulations using the cited raw materials that will be processed, conformed and sintered in the temperatures of 1150 °C, 1175 °C, 1200 °C, 1225 °C e 1250 °C. From the physical characterizations, chemical and morphologic of the formed formulations, the effect of barium oxide is determined in the physical and mechanical properties of the studied system carrying water absorption tests, linear retraction, apparent porosity, apparent specific mass, compacting curve, flexural strength and microstructural analysis by XRD and SEM. After analyzing the results, indicated that barium oxide acts as a flux of high temperature and as the ordering of structure, where the embedded glass phase has the nucleating effect phase potassium silico-aluminum reacting with free silica which together with the high content of potassium concentrated form a new crystalline phase called microcline. The masses studied with the addition of barium oxide present physical-mechanical properties highly satisfactory in reduced firing temperatures, which implies a saving in energy given off in the production and increased productivity
Resumo:
The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties
Resumo:
The mortar is a type of adhesive products used in large scale in construction, it is a function of its variety and ease of application . Although industrialized product and endowed with technology in its production is very frequent occurrence of the same pathology , which causes frequent damage and losses in the construction industry. Faced with this real market situation , the technical and scientific study of the effects of the addition of diatomite on the rheological and mechanical behavior of adhesive mortars are needed. This work back as a suggestion the use of diatomite as a mineral additive in formulations of adhesive mortars for partial replacement of cellulose based additives . The choice of using this mineral occurs through physical, chemical and rheological properties that justify its use in this product line , and is a raw material abundant in our region and can thus contribute positively to the minimization of direct costs cellulose -based additives . Industrial adhesive mortar used for comparison , was type AC1 . Formulations of adhesive mortar with diatomite held constant dosed quantities of sand, cement and the water / cement (w / c ) , or adhesive mortar formulations were developed with levels 10, 20, 30 and 40% of diatomite substituting part of the cellulose -based additives . These mortars were subjected to the following tests that define and evaluate the rheological and mechanical behavior of this type of mortar. The results attest the best performance of the adhesive mortar type AC1 with partial replacement of 30 % of the cellulose-based additive for diatomite