898 resultados para Remote sensing - Data acquisitions
Resumo:
The delineation of Geomorphic Process Units (GPUs) aims to quantify past, current and future geomorphological processes and the sediment flux associated with them. Five GPUs have been identified for the Okstindan area of northern Norway and these were derived from the combination of Landsat satellite imagery (TM and ETM+) with stereo aerial photographs (used to construct a Digital Elevation Model) and ground survey. The Okstindan study area is sub-arctic and mountainous and is dominated by glacial and periglacial processes. The GPUs exclude the glacial system (some 37% of the study area) and hence they are focussed upon periglacial and colluvial processes. The identified GPUs are: 1. solifluction and rill erosion; 2. talus creep, slope wash and rill erosion; 3. accumulation of debris by rock and boulder fall; 4. rockwalls; and 5. stable ground with dissolved transport. The GPUs have been applied to a ‘test site’ within the study area in order to illustrate their potential for mapping the spatial distribution of geomorphological processes. The test site within the study area is a catchment which is representative of the range of geomorphological processes identified.
Resumo:
As improvements to the optical design of spectrometer and radiometer instruments evolve with advances in detector sensitivity, use of focal plane detector arrays and innovations in adaptive optics for large high altitude telescopes, interest in mid-infrared astronomy and remote sensing applications have been areas of progressive research in recent years. This research has promoted a number of developments in infrared coating performance, particularly by placing increased demands on the spectral imaging requirements of filters to precisely isolate radiation between discrete wavebands and improve photometric accuracy. The spectral design and construction of multilayer filters to accommodate these developments has subsequently been an area of challenging thin-film research, to achieve high spectral positioning accuracy, environmental durability and aging stability at cryogenic temperatures, whilst maximizing the far-infrared performance. In this paper we examine the design and fabrication of interference filters in instruments that utilize the mid-infrared N-band (6-15 µm) and Q-band (16-28 µm) atmospheric windows, together with a rationale for the selection of materials, deposition process, spectral measurements and assessment of environmental durability performance.
Resumo:
The Heliospheric Imager (HI) instruments on board the STEREO spacecraft are used to analyze the solar wind during August and September 2007. We show how HI can be used to image the streamer belt and, in particular, the variability of the slow solar wind which originates inside and in the vicinity of the streamer belt. Intermittent mass flows are observed in HI difference images, streaming out along the extension of helmet streamers. These flows can appear very differently in images: plasma distributed on twisted flux ropes, V‐shaped structures, or “blobs.” The variety of these transient features may highlight the richness of phenomena that could occur near helmet streamers: emergence of flux ropes, reconnection of magnetic field lines at the tip of helmet streamers, or disconnection of open magnetic field lines. The plasma released with these transient events forms part of the solar wind in the higher corona; HI observations show that these transients are frequently entrained by corotating interaction regions (CIRs), leading to the formation of larger, brighter plasma structures in HI images. This entrainment is used to estimate the trajectory of these plasma ejecta. In doing so, we demonstrate that successive transients can be entrained by the same CIR in the high corona if they emanate from the same corotating source. Some parts of the streamers are more effective sources of transients than others. Surprisingly, evidence is given for the outflow of a recurring twisted magnetic structure, suggesting that the emergence of flux ropes can be recurrent.
Resumo:
Jerdon's Courser Rhinoptilus bitorquatus is one of the most endangered and least understood birds in the world. It is endemic to scrub habitats in southeast India which have been lost and degraded because of human land use. We used satellite images from 1991 and 2000 and two methods for classifying land cover to quantify loss of Jerdon's Courser habitat. The scrub habitats on which this species depends decreased in area by 11-15% during this short period (9.6 years), predominantly as a result of scrub clearance and conversion to agriculture. The remaining scrub patches were smaller and further from human settlements in 2000 than in 1991, implying that much of the scrub loss had occurred close to human population centres. We discuss the implications of our results for the conservation of Jerdon's Courser and the use of remote sensing methods in conservation.
Resumo:
We have conducted the first extensive field test of two new methods to retrieve optical properties for overhead clouds that range from patchy to overcast. The methods use measurements of zenith radiance at 673 and 870 nm wavelengths and require the presence of green vegetation in the surrounding area. The test was conducted at the Atmospheric Radiation Measurement Program Oklahoma site during September–November 2004. These methods work because at 673 nm (red) and 870 nm (near infrared (NIR)), clouds have nearly identical optical properties, while vegetated surfaces reflect quite differently. The first method, dubbed REDvsNIR, retrieves not only cloud optical depth τ but also radiative cloud fraction. Because of the 1-s time resolution of our radiance measurements, we are able for the first time to capture changes in cloud optical properties at the natural timescale of cloud evolution. We compared values of τ retrieved by REDvsNIR to those retrieved from downward shortwave fluxes and from microwave brightness temperatures. The flux method generally underestimates τ relative to the REDvsNIR method. Even for overcast but inhomogeneous clouds, differences between REDvsNIR and the flux method can be as large as 50%. In addition, REDvsNIR agreed to better than 15% with the microwave method for both overcast and broken clouds. The second method, dubbed COUPLED, retrieves τ by combining zenith radiances with fluxes. While extra information from fluxes was expected to improve retrievals, this is not always the case. In general, however, the COUPLED and REDvsNIR methods retrieve τ to within 15% of each other.