974 resultados para Remote Sensing and LiDAR Data Water Quality
An assessment of aerosol‐cloud interactions in marine stratus clouds based on surface remote sensing
Resumo:
An assessment of aerosol-cloud interactions (ACI) from ground-based remote sensing under coastal stratiform clouds is presented. The assessment utilizes a long-term, high temporal resolution data set from the Atmospheric Radiation Measurement (ARM) Program deployment at Pt. Reyes, California, United States, in 2005 to provide statistically robust measures of ACI and to characterize the variability of the measures based on variability in environmental conditions and observational approaches. The average ACIN (= dlnNd/dlna, the change in cloud drop number concentration with aerosol concentration) is 0.48, within a physically plausible range of 0–1.0. Values vary between 0.18 and 0.69 with dependence on (1) the assumption of constant cloud liquid water path (LWP), (2) the relative value of cloud LWP, (3) methods for retrieving Nd, (4) aerosol size distribution, (5) updraft velocity, and (6) the scale and resolution of observations. The sensitivity of the local, diurnally averaged radiative forcing to this variability in ACIN values, assuming an aerosol perturbation of 500 c-3 relative to a background concentration of 100 cm-3, ranges betwee-4 and -9 W -2. Further characterization of ACI and its variability is required to reduce uncertainties in global radiative forcing estimates.
Resumo:
A weekly programme of water quality monitoring has been conducted by Slapton Ley Field Centre since 1970. Samples have been collected for the four main streams draining into Slapton Ley, from the Ley itself and from other sites within the catchment. On occasions, more frequent sampling has been undertaken during short-term research projects, usually in relation to nutrient export from the catchment. These water quality data, unparalleled in length for a series of small drainage basins in the British Isles, provide a unique resource for analysis of spatial and temporal variations in stream water quality within an agricultural area. Not surprisingly, given the eutrophic status of the Ley, most attention has focused on the nutrients nitrate and phosphate. A number of approaches to modelling nutrient loss have been attempted, including time series analysis and the application of nutrient export and physically-based models.
Resumo:
Full-waveform laser scanning data acquired with a Riegl LMS-Q560 instrument were used to classify an orange orchard into orange trees, grass and ground using waveform parameters alone. Gaussian decomposition was performed on this data capture from the National Airborne Field Experiment in November 2006 using a custom peak-detection procedure and a trust-region-reflective algorithm for fitting Gauss functions. Calibration was carried out using waveforms returned from a road surface, and the backscattering coefficient c was derived for every waveform peak. The processed data were then analysed according to the number of returns detected within each waveform and classified into three classes based on pulse width and c. For single-peak waveforms the scatterplot of c versus pulse width was used to distinguish between ground, grass and orange trees. In the case of multiple returns, the relationship between first (or first plus middle) and last return c values was used to separate ground from other targets. Refinement of this classification, and further sub-classification into grass and orange trees was performed using the c versus pulse width scatterplots of last returns. In all cases the separation was carried out using a decision tree with empirical relationships between the waveform parameters. Ground points were successfully separated from orange tree points. The most difficult class to separate and verify was grass, but those points in general corresponded well with the grass areas identified in the aerial photography. The overall accuracy reached 91%, using photography and relative elevation as ground truth. The overall accuracy for two classes, orange tree and combined class of grass and ground, yielded 95%. Finally, the backscattering coefficient c of single-peak waveforms was also used to derive reflectance values of the three classes. The reflectance of the orange tree class (0.31) and ground class (0.60) are consistent with published values at the wavelength of the Riegl scanner (1550 nm). The grass class reflectance (0.46) falls in between the other two classes as might be expected, as this class has a mixture of the contributions of both vegetation and ground reflectance properties.
Resumo:
Contrails and especially their evolution into cirrus-like clouds are thought to have very important effects on local and global radiation budgets, though are generally not well represented in global climate models. Lack of contrail parameterisations is due to the limited availability of in situ contrail measurements which are difficult to obtain. Here we present a methodology for successful sampling and interpretation of contrail microphysical and radiative data using both in situ and remote sensing instrumentation on board the FAAM BAe146 UK research aircraft as part of the COntrails Spreading Into Cirrus (COSIC) study.
Resumo:
Radiometric data in the visible domain acquired by satellite remote sensing have proven to be powerful for monitoring the states of the ocean, both physical and biological. With the help of these data it is possible to understand certain variations in biological responses of marine phytoplankton on ecological time scales. Here, we implement a sequential data-assimilation technique to estimate from a conventional nutrient–phytoplankton–zooplankton (NPZ) model the time variations of observed and unobserved variables. In addition, we estimate the time evolution of two biological parameters, namely, the specific growth rate and specific mortality of phytoplankton. Our study demonstrates that: (i) the series of time-varying estimates of specific growth rate obtained by sequential data assimilation improves the fitting of the NPZ model to the satellite-derived time series: the model trajectories are closer to the observations than those obtained by implementing static values of the parameter; (ii) the estimates of unobserved variables, i.e., nutrient and zooplankton, obtained from an NPZ model by implementation of a pre-defined parameter evolution can be different from those obtained on applying the sequences of parameters estimated by assimilation; and (iii) the maximum estimated specific growth rate of phytoplankton in the study area is more sensitive to the sea-surface temperature than would be predicted by temperature-dependent functions reported previously. The overall results of the study are potentially useful for enhancing our understanding of the biological response of phytoplankton in a changing environment.
Resumo:
This paper describes the hydrochemistry of a lowland, urbanised river-system, The Cut in England, using in situ sub-daily sampling. The Cut receives effluent discharges from four major sewage treatment works serving around 190,000 people. These discharges consist largely of treated water, originally abstracted from the River Thames and returned via the water supply network, substantially increasing the natural flow. The hourly water quality data were supplemented by weekly manual sampling with laboratory analysis to check the hourly data and measure further determinands. Mean phosphorus and nitrate concentrations were very high, breaching standards set by EU legislation. Though 56% of the catchment area is agricultural, the hydrochemical dynamics were significantly impacted by effluent discharges which accounted for approximately 50% of the annual P catchment input loads and, on average, 59% of river flow at the monitoring point. Diurnal dissolved oxygen data demonstrated high in-stream productivity. From a comparison of high frequency and conventional monitoring data, it is inferred that much of the primary production was dominated by benthic algae, largely diatoms. Despite the high productivity and nutrient concentrations, the river water did not become anoxic and major phytoplankton blooms were not observed. The strong diurnal and annual variation observed showed that assessments of water quality made under the Water Framework Directive (WFD) are sensitive to the time and season of sampling. It is recommended that specific sampling time windows be specified for each determinand, and that WFD targets should be applied in combination to help identify periods of greatest ecological risk. This article is protected by copyright. All rights reserved.
Resumo:
A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large footprint LiDAR data was tested in a closed canopy environment as a way of extracting vertical foliage profiles from LiDAR raw-waveform. In this study, an adaptation of this method to small-footprint data has been shown, tested and validated in an Australian sparse canopy forest at plot- and site-level. Further, the methodology itself has been enhanced by implementing a dataset-adjusted reflectance ratio calculation according to Armston et al. (2013) in the processing chain, and tested against a fixed ratio of 0.5 estimated for the laser wavelength of 1550nm. As a by-product of the methodology, effective leaf area index (LAIe) estimates were derived and compared to hemispherical photography-derived values. To assess the influence of LiDAR aggregation area size on the estimates in a sparse canopy environment, LiDAR CHPs and LAIes were generated by aggregating waveforms to plot- and site-level footprints (plot/site-aggregated) as well as in 5m grids (grid-processed). LiDAR profiles were then compared to leaf biomass field profiles generated based on field tree measurements. The correlation between field and LiDAR profiles was very high, with a mean R2 of 0.75 at plot-level and 0.86 at site-level for 55 plots and the corresponding 11 sites. Gridding had almost no impact on the correlation between LiDAR and field profiles (only marginally improvement), nor did the dataset-adjusted reflectance ratio. However, gridding and the dataset-adjusted reflectance ratio were found to improve the correlation between raw-waveform LiDAR and hemispherical photography LAIe estimates, yielding the highest correlations of 0.61 at plot-level and of 0.83 at site-level. This proved the validity of the approach and superiority of dataset-adjusted reflectance ratio of Armston et al. (2013) over a fixed ratio of 0.5 for LAIe estimation, as well as showed the adequacy of small-footprint LiDAR data for LAIe estimation in discontinuous canopy forests.
Resumo:
This study has compared preliminary estimates of effective leaf area index (LAI) derived from fish-eye lens photographs to those estimated from airborne full-waveform small-footprint LiDAR data for a forest dataset in Australia. The full-waveform data was decomposed and optimized using a trust-region-reflective algorithm to extract denser point clouds. LAI LiDAR estimates were derived in two ways (1) from the probability of discrete pulses reaching the ground without being intercepted (point method) and (2) from raw waveform canopy height profile processing adapted to small-footprint laser altimetry (waveform method) accounting for reflectance ratio between vegetation and ground. The best results, that matched hemispherical photography estimates, were achieved for the waveform method with a study area-adjusted reflectance ratio of 0.4 (RMSE of 0.15 and 0.03 at plot and site level, respectively). The point method generally overestimated, whereas the waveform method with an arbitrary reflectance ratio of 0.5 underestimated the fish-eye lens LAI estimates.
Resumo:
The EU Water Framework Directive (WFD) requires that the ecological and chemical status of water bodies in Europe should be assessed, and action taken where possible to ensure that at least "good" quality is attained in each case by 2015. This paper is concerned with the accuracy and precision with which chemical status in rivers can be measured given certain sampling strategies, and how this can be improved. High-frequency (hourly) chemical data from four rivers in southern England were subsampled to simulate different sampling strategies for four parameters used for WFD classification: dissolved phosphorus, dissolved oxygen, pH and water temperature. These data sub-sets were then used to calculate the WFD classification for each site. Monthly sampling was less precise than weekly sampling, but the effect on WFD classification depended on the closeness of the range of concentrations to the class boundaries. In some cases, monthly sampling for a year could result in the same water body being assigned to three or four of the WFD classes with 95% confidence, due to random sampling effects, whereas with weekly sampling this was one or two classes for the same cases. In the most extreme case, the same water body could have been assigned to any of the five WFD quality classes. Weekly sampling considerably reduces the uncertainties compared to monthly sampling. The width of the weekly sampled confidence intervals was about 33% that of the monthly for P species and pH, about 50% for dissolved oxygen, and about 67% for water temperature. For water temperature, which is assessed as the 98th percentile in the UK, monthly sampling biases the mean downwards by about 1 °C compared to the true value, due to problems of assessing high percentiles with limited data. Low-frequency measurements will generally be unsuitable for assessing standards expressed as high percentiles. Confining sampling to the working week compared to all 7 days made little difference, but a modest improvement in precision could be obtained by sampling at the same time of day within a 3 h time window, and this is recommended. For parameters with a strong diel variation, such as dissolved oxygen, the value obtained, and thus possibly the WFD classification, can depend markedly on when in the cycle the sample was taken. Specifying this in the sampling regime would be a straightforward way to improve precision, but there needs to be agreement about how best to characterise risk in different types of river. These results suggest that in some cases it will be difficult to assign accurate WFD chemical classes or to detect likely trends using current sampling regimes, even for these largely groundwater-fed rivers. A more critical approach to sampling is needed to ensure that management actions are appropriate and supported by data.
Resumo:
Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes.
Resumo:
The region of Toledo River, Parana, Brazil is characterized by intense anthropogenic activities. Hence, metal concentrations and physical-chemical parameters of Toledo River water were determined in order to complete an environmental evaluation catalog. Samples were collected monthly during one year period at seven different sites from the source down the river mouth, physical-chemical variables were analyzed, and major metallic ions were measured. Metal analysis was performed by using the synchrotron radiation total reflection X-ray fluorescence technique. A statistical analysis was applied to evaluate the reliability of experimental data. The analysis of obtained results have shown that a strong correlation between physical-chemical parameters existed among sites 1 and 7, suggesting that organic pollutants were mainly responsible for decreasing the Toledo River water quality.
Resumo:
New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.