927 resultados para Refrigerated storage
Resumo:
Im August 1997 wurde an Bord des FFS „Walther Herwig“ ein Eislagerversuch mit Kabeljau aus der Barebtssee durchgeführt. Die Fische wurden in täglichem Abstand auf ihre chemischen, physikalischen, sensorischen und mikrobiologischen Eigenschaften hin untersucht. Die analytischen Daten wurden jeweils mit den Tagen in Eis korreliert. Es erwies sich, daß die Werte vom Fischtester VI sowie RT Frischetester, von Dimethylamin- und Trimethylaminoxidstickstoff, die Qualitätseinstufung anhand des EUQualitätsbewertungsschemas, die sensorische Bewertung von gegarten Filetproben und die Gesamtkeimzahl auf der Haut am besten mit den im Eis verbrachten Tagen korrelierten. Die guteKorrelation zwischen sensorischen und instrumentell ermittelten Daten läßt in gewissem Umfang einen Ersatz von Sensorikdaten durch instrumentell ermittelten zu.
Resumo:
Most of the fish marketed throughout Nigeria are in either smoked or dried form. The technological requirement for other forms of preservation like chilling and freezing cannot be afforded by the small scale fisher folk. Considerable quantities of fish processed for distant consumer markets are lost at handling, processing, storage and marketing stages. Significant losses occur through infestation by mites, insects, fungal infestation and fragmentation during transportation. This paper attempts to describe the effect of these losses on fish quality and suggests methods of protecting fish from agents of deterioration
Resumo:
Production of mince from Tilapia using a combination of physical and chemical methods was found to improve the storage life of the mince in the deep freezer. Though the chemical composition of the mince was slightly affected, the mince was microbiologically stable throughout the five weeks frozen storage. Fish cakes prepared traditionally from tilapia minces were more acceptable than oven dried cakes. Production of fish cakes form tilapia will improve utilization of this species in areas where small size tilapia are regarded as fish of low economic value
Resumo:
The study was carried out to asses the nutritional qualities of smoked O. niloticus and to discover the best methods of storage to minimize spoilage and infestation of smoked fish. Result showed that the protein contents in A and D decreased while the protein contents of b and C increased. The lipid content increased only in A while it decreased in B-C and D. The moisture content generally increased over the period of storage and there was an increase in ash content only in C while it decreased in A, B and D. The samples packed in polythene bag suffered about 35% mould infection and a few were attached by rodents with some fouling. Samples packed in jute bag were in good condition but were slightly attached by insect. All samples packed in carton and basket were still in good state but there were insect attack in those packed in carton
Resumo:
Investigation were carried out on the effect of some locally available species in the enhancement of the organoleptic quality and the storage periods of smoked Heterotis niloticus using Pprosopis africana as common smoke sources. Samples of fresh H. niloticus were bought, cut into chunks while extract juice from pepper, ginger rhizomes, garlic, onion bulb were used as sources of spices. Samples of fish were divided randomly into five (5) batches dipped into spice extract juices for 10 minutes drained and smoked with common firewood. Treatment without spice extract juice served as control. Each batch of fish was smoked for 7 hours on a drum-made smoking kiln products were individually packaged in polythene bag stored at room temperature and used for sensory evaluation and microbial analysis. Results of the sensory evaluation indicated that there was significant difference (P<0.005) for taste, appearance, colour and overall acceptance for the treatments. Ginger juice extract had the best overall acceptance. Similarly there was significant difference (P>0.05) in the microbial analysis. The garlic juice extract had the longest storage period with minimum total plate and mould count after 8 weeks
Resumo:
Storage systems are widely used and have played a crucial rule in both consumer and industrial products, for example, personal computers, data centers, and embedded systems. However, such system suffers from issues of cost, restricted-lifetime, and reliability with the emergence of new systems and devices, such as distributed storage and flash memory, respectively. Information theory, on the other hand, provides fundamental bounds and solutions to fully utilize resources such as data density, information I/O and network bandwidth. This thesis bridges these two topics, and proposes to solve challenges in data storage using a variety of coding techniques, so that storage becomes faster, more affordable, and more reliable.
We consider the system level and study the integration of RAID schemes and distributed storage. Erasure-correcting codes are the basis of the ubiquitous RAID schemes for storage systems, where disks correspond to symbols in the code and are located in a (distributed) network. Specifically, RAID schemes are based on MDS (maximum distance separable) array codes that enable optimal storage and efficient encoding and decoding algorithms. With r redundancy symbols an MDS code can sustain r erasures. For example, consider an MDS code that can correct two erasures. It is clear that when two symbols are erased, one needs to access and transmit all the remaining information to rebuild the erasures. However, an interesting and practical question is: What is the smallest fraction of information that one needs to access and transmit in order to correct a single erasure? In Part I we will show that the lower bound of 1/2 is achievable and that the result can be generalized to codes with arbitrary number of parities and optimal rebuilding.
We consider the device level and study coding and modulation techniques for emerging non-volatile memories such as flash memory. In particular, rank modulation is a novel data representation scheme proposed by Jiang et al. for multi-level flash memory cells, in which a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. It eliminates the need for discrete cell levels, as well as overshoot errors, when programming cells. In order to decrease the decoding complexity, we propose two variations of this scheme in Part II: bounded rank modulation where only small sliding windows of cells are sorted to generated permutations, and partial rank modulation where only part of the n cells are used to represent data. We study limits on the capacity of bounded rank modulation and propose encoding and decoding algorithms. We show that overlaps between windows will increase capacity. We present Gray codes spanning all possible partial-rank states and using only ``push-to-the-top'' operations. These Gray codes turn out to solve an open combinatorial problem called universal cycle, which is a sequence of integers generating all possible partial permutations.
Resumo:
The work presented in this thesis revolves around erasure correction coding, as applied to distributed data storage and real-time streaming communications.
First, we examine the problem of allocating a given storage budget over a set of nodes for maximum reliability. The objective is to find an allocation of the budget that maximizes the probability of successful recovery by a data collector accessing a random subset of the nodes. This optimization problem is challenging in general because of its combinatorial nature, despite its simple formulation. We study several variations of the problem, assuming different allocation models and access models, and determine the optimal allocation and the optimal symmetric allocation (in which all nonempty nodes store the same amount of data) for a variety of cases. Although the optimal allocation can have nonintuitive structure and can be difficult to find in general, our results suggest that, as a simple heuristic, reliable storage can be achieved by spreading the budget maximally over all nodes when the budget is large, and spreading it minimally over a few nodes when it is small. Coding would therefore be beneficial in the former case, while uncoded replication would suffice in the latter case.
Second, we study how distributed storage allocations affect the recovery delay in a mobile setting. Specifically, two recovery delay optimization problems are considered for a network of mobile storage nodes: the maximization of the probability of successful recovery by a given deadline, and the minimization of the expected recovery delay. We show that the first problem is closely related to the earlier allocation problem, and solve the second problem completely for the case of symmetric allocations. It turns out that the optimal allocations for the two problems can be quite different. In a simulation study, we evaluated the performance of a simple data dissemination and storage protocol for mobile delay-tolerant networks, and observed that the choice of allocation can have a significant impact on the recovery delay under a variety of scenarios.
Third, we consider a real-time streaming system where messages created at regular time intervals at a source are encoded for transmission to a receiver over a packet erasure link; the receiver must subsequently decode each message within a given delay from its creation time. For erasure models containing a limited number of erasures per coding window, per sliding window, and containing erasure bursts whose maximum length is sufficiently short or long, we show that a time-invariant intrasession code asymptotically achieves the maximum message size among all codes that allow decoding under all admissible erasure patterns. For the bursty erasure model, we also show that diagonally interleaved codes derived from specific systematic block codes are asymptotically optimal over all codes in certain cases. We also study an i.i.d. erasure model in which each transmitted packet is erased independently with the same probability; the objective is to maximize the decoding probability for a given message size. We derive an upper bound on the decoding probability for any time-invariant code, and show that the gap between this bound and the performance of a family of time-invariant intrasession codes is small when the message size and packet erasure probability are small. In a simulation study, these codes performed well against a family of random time-invariant convolutional codes under a number of scenarios.
Finally, we consider the joint problems of routing and caching for named data networking. We propose a backpressure-based policy that employs virtual interest packets to make routing and caching decisions. In a packet-level simulation, the proposed policy outperformed a basic protocol that combines shortest-path routing with least-recently-used (LRU) cache replacement.
Resumo:
4 p.
Resumo:
28 p.
Resumo:
30 p.
Resumo:
We have theoretically investigated the phase shift of a probe field for a four-level atomic system interacting successively with two fields tuned near an EIT resonance of an atom, a microwave field, and a coupling field. It has been found that the phase of retrieved signal has been shifted due to the cross-phase modulation when the stored spin wave was disturbed by a microwave. Because of the low relaxation rates of the ground hyperfine state, our proposed technique can impart a large phase rotation onto the probe field with low absorption of retrieved field and very low intensity of the microwave field.
Resumo:
We have studied theoretically the inherent mechanisms of nonvolatile holographic storage in doubly doped LiNbO3 crystals. The photochromic effect of doubly doped LiNbO3 crystals is discussed, and the criterion for this effect is obtained through the photochromism-bleach factor a = S(21)gamma(1)/S(11)gamma(2) that we define. The two-center recording and fixing processes are analytically discussed with extended Kukhtarev equations, and analytical expressions for recorded and fixed steady-state space-charge fields as well as temporal behavior during the fixing process are obtained. The effects of microphysical quantities, the macrophotochromic effect on fixing efficiency, and recorded and fixed steady-state space-charge fields, are discussed analytically and numerically. (C) 2002 Optical Society of America.
Resumo:
By sensitizing with 514 nm green light, 488 nm blue light and 390 nm ultraviolet light, respectively, recording with 633 nm red light, effect of wavelength of sensitizing light on holographic storage properties in LiNbO3:Fe:Ni crystal is investigated in detail. It is shown that by shortening the wavelength of sensitizing light gradually, nonvolatile holographic recording properties of oxidized LiNbO3:Fe:Ni crystal is optimized gradually, 390 nm ultraviolet light is the best as the sensitizing light. Considering the absorption of sensitizing light, to obtain the best performance in two-center holographic recording we must choose a sensitizing wavelength that is long enough to prevent unwanted absorptions (band-to-band, etc.) and short enough to result in efficient sensitization from the deep traps. So in practice a trade-off is always needed. Explanation is presented theoretically. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Vectorial Kukhtarev equations modified for the nonvolatile holographic recording in doubly doped crystals are analyzed, in which the bulk photovoltaic effect and the external electrical field are both considered. On the basis of small modulation approximation, both the analytic solution to the space-charge field with time in the recording phase and in the readout phase are deduced. The analytic solutions can be easily simplified to adapt the one-center model, and they have the same analytic expressions given those when the grating vector is along the optical axis. Based on the vectorial analyses of the band transport model an optimal recording direction is given to maximize the refractive index change in doubly doped LiNbO3:Fe: Mn crystals. (c) 2007 Optical Society of America.