996 resultados para Refranes y proverbios
Resumo:
Yttrium oxide (Y(2)O(3)) thin films were deposited by microwave electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapour deposition (MOCVD) process using indigenously developed metal organic precursors Yttrium 2,7,7-trimethyl-3,5-octanedionates, commonly known as Y(tod)(3) which were synthesized by an ultrasound method. A series of thin films were deposited by varying the oxygen flow rate from 1-9 sccm, keeping all other parameters constant. The deposited coatings were characterized by X-ray photoelectron spectroscopy, glancing angle X-ray diffraction and infrared spectroscopy. Thickness and roughness for the films were measured by stylus profilometry. Optical properties of the coatings were studied by the spectroscopic ellipsometry. Hardness and elastic modulus of the films were measured by nanoindentation technique. Being that microwave ECR CVD process is operating-pressure-sensitive, optimum oxygen activity is very essential for a fixed flow rate of precursor, in order to get a single phase cubic yttrium oxide in the films. To the best of our knowledge, this is the first effort that describes the use of Y(tod)(3) precursor for deposition of Y(2)O(3) films using plasma assisted CVD process.
Resumo:
We have synthesized La0.83Na0.11MnO2.93 by heating La2O3 and MnCO3 in NaCl melt at 900 °C. The exact composition was arrived by analyzing each ion by an independent chemical method. The compound crystallized in a rhombohedral structure and showed an insulator-to-metal transition at 290 K. Epitaxial thin films were fabricated on LaAlO3 (100) using a pulsed laser deposition technique. The film also showed an insulator-to-metal transition at 290 K. Magnetoresistance [ΔR/R0 = (RH−R0)/R0] was −71% near the insulator-to-metal transition temperature of 290 K at 6 T magnetic field.
Resumo:
Phase-singular solids of the composition, (Mg1−(x+y) Cax Lay)(Ti1−yAly)O3 (x = 0 to 0.88; y = 0.05 to 0.35) having the cubic perovskite-type structure were prepared by the substitution of La3+ and Al3+ in equivalent quantities which brought about complete miscibility between MgTiO3 and CaTiO3. These ceramics showed relative permittivities of 16.5 to 50 (at 6 GHz) with increasing Ca content, high Q values of 10 000 to 30 000 and retained near-zero temperature coefficients in permittivity at optimum y values. Their dielectric characteristics are better accountable in terms of the positional disorder rather than the tolerance factor of perovskite structure.
Resumo:
This paper presents the first stable isotope (delta O-18 and delta C-13) data of a similar to 400 years (1590-2006 AD) long annual to decadal-resolution speleothem record collected from the Indian Lesser Himalaya. The data show a variation from -2.7 to -5.9 parts per thousand in delta O-18 and -5.3 to -8.8 parts per thousand in delta C-13. The isotopic analyses indicate that the climate during this period can be divided into two stages: a wet phase during the Little Ice Age (LIA) (1590-1850 AD) and comparatively dry phase during the post-LIA after 1850 AD. However, the record also documents the minor dry events during the LIA and a wet episode after the LIA. Within the age uncertainty, the dry spells during the LIA are linked with the historical drought events in the Indian subcontinent and similar latitudes. The isotopic record is consistent with a number of previous studies in the areas influenced by the Westerlies but appears to be conflicting to the regions, dominated by the Indian Summer Monsoon (ISM). This may be due to the possible changes in the strength of Westerlies in the study area and added by negative anomaly of North Atlantic Oscillation (NAO) during the LIA. (C) 2012 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
While the tetrahedral face of methane has an electron rich centre and can act as a hydrogen bond acceptor, substitution of one of its hydrogens with some electron withdrawing group (such as -F/OH) can make the opposite face electron deficient. Electrostatic potential calculations confirm this and high level quantum calculations show interactions between the positive face of methanol/methyl fluoride and electron rich centers of other molecules such as H2O. Analysis of the wave functions of atoms in molecules shows the presence of an unusual C center dot center dot center dot Y interaction, which could be called `carbon bonding'. NBO analysis and vibrational frequency shifts confirm the presence of this interaction. Given the properties of alkyl groups bonded to electronegative elements in biological molecules, such interactions could play a significant role, which is yet to be recognized. This and similar interactions could give an enthalpic contribution to what is called the `hydrophobic interactions'.
Resumo:
In this paper, we construct the fuzzy (finite-dimensional) analogs of the conifold Y-6 and its base X-5. We show that fuzzy X-5 is (the analog of) a principal U(1) bundle over fuzzy spheres S-F(2) x S-F(2) and explicitly construct the associated monopole bundles. In particular, our construction provides an explicit discretization of the spaces T-k,T-k and T-k,T-0.
Resumo:
Lithium manganese oxide (Li2-xMnO3-y) thin films have been deposited from activated Li2MnO3 powder by radio frequency magnetron sputtering for the first time in the literature and subjected to electrochemical characterization. Physicochemical characterization by X-ray diffraction has revealed the formation of the thin films with crystallographic phase identical to that of the powder target made of Li2-xMnO3-y. The Li:Mn atomic ratio for the powder and film are calculated by X-ray photoelectron spectroscopy and it is found to be 1.6:1.0. From galvanostatic charge discharge studies, a specific discharge capacity of 139 mu Ah mu m(-1) cm(-2) was obtained when cycled between 2.00 and 3.50 V vs Li/Li+. Additionally the rate capability of the thin film electrodes was studied by subjecting the cells to charge-discharge cycling at different current densities in the range from 10 mu A cm(-2) to 100 mu A cm(-2). (C) 2013 The Electrochemical Society. All rights reserved.
Resumo:
Hexagonal Ln(2)CuTiO(6) (Ln = Y, Dy, Ho, Er, and Yb) exhibits a rare combination of interesting dielectric properties, in the form of relatively large dielectric constants (epsilon' > 30), low losses, and extremely small temperature and frequency dependencies, over large ranges of temperature and frequency Choudhury et al., Appl. Phys. Lett. 96, 162903 (2010) and Choudhury et al., Phys. Rev. B 82, 134203 (2010)], making these compounds promising as high-k dielectric materials. The authors present a brief review of the existing literature on this interesting class of oxides, complimenting it with spectroscopic data in conjunction with first-principles calculation results, revealing a novel mechanism underlying these robust dielectric properties. These show that the large size differences in Cu2+ and Ti4+ at the B-site, aided by an inherent random distribution of CuO5 and TiO5 polyhedral units, frustrates the ferroelectric instability, inherent to the noncentrosymmetric P6(3) cm space group of this system, and gives rise to the observed relatively large dielectric constant values. Additionally, the phononic contributions to the dielectric constant are dominated primarily by mid-frequency (>100 cm(-1)) polar modes, involving mainly Ti4+ 3d(0) ions. In contrast, the soft polar phonon modes with frequencies typically less than 100 cm(-1), usually responsible for dielectric properties of materials, are found to be associated with non-d(0) Cu2+ ions and to contribute very little, giving rise to the remarkable temperature stability of dielectric properties of these compounds. (C) 2014 American Vacuum Society.
Resumo:
Rod like structures of hexagonal Y(OH)(3):Ni2+ and cubic Y2O3:Ni2+ phosphors have been successfully synthesized by solvothermal method. X-ray diffraction studies of as-formed product shows hexagonal phase, whereas the product heat treated at 700 degrees C shows pure cubic phase. Scanning electron micrographs (SEM) of Y(OH)(3):Ni2+ show hexagonal rods while Y2O3:Ni2+ rods were found to consist of many nanoparticles stacked together forming multi-particle-chains. EPR studies suggest that the site symmetry around Ni2+ ions is predominantly octahedral. PL spectra show emission in blue, green and red regions due to the T-3(1)(P-3)->(3)A(2)(F-3), T-1(2)(D-1)->(3)A(2)(F-3) and T-1(2)(D-1)-> T-3(2)(F-3) transitions of Ni2+ ions, respectively. TL studies were carried out for Y(OH)(3):Ni2+ and Y2O3:Ni2+ phosphor upon gamma-dose for 1-6 kGy. A single well resolved glow peaks at 195 and 230 degrees C were recorded for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The glow peak intensity increases linearly up to 4 kGy and 5 kGy for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were estimated by different methods. The phosphor follows simple glow peak structure, linear response with gamma dose, low fading and simple trap distribution, suggesting that it is quite suitable for radiation dosimetry. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Pyrophosphate cathodes have been recently reported as a competent family of insertion compounds for sodium-ion batteries. In the current study, we have investigated the binary Na2 - x(Fe1 - yMny)P2O7 (0 <= y <= 1) pyrophosphate family, synthesized by the classical solid-state method. They form a continuous solid solution maintaining triclinic P-1 (#2) symmetry. The local structural coordination differs mainly by different degrees of Na site occupancy and preferential occupation of the Fe2 site by Mn. The structural and magnetic properties of these mixed-metal pyrophosphate phases have been studied. In each case, complete Fe3+/Fe2+ redox activity has been obtained centered at 3 V vs. Na. The Fe3+/Fe2+ redox process involves multiple steps between 2.5 and 3 V owing to Na-cation ordering during electrochemical cycling, which merge to form a broad single Fe3+/Fe2+ redox peak upon progressive Mn-doping. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In the present work, Li2-x MnO3-y (LMO) thin films have been deposited by radio frequency (RF) reactive magnetron sputtering using acid-treated Li2MnO3 powder target. Systematic investigations have been carried out to study the effect of RF power on the physicochemical properties of LMO thin films deposited on platinized silicon substrates. X-ray diffraction, electron microscopy, surface chemical analysis and electrochemical studies were carried out for the LMO films after post deposition annealing treatment at 500 A degrees C for 1 h in air ambience. Galvanostatic charge discharge studies carried out using the LMO thin film electrodes, delivered a highest discharge capacity of 139 mu Ah mu m(-1) cm(-2) in the potential window 2.0-3.5 V vs. Li/Li+ at 100 W RF power and lowest discharge capacity of 80 mu Ah mu m(-1) cm(-2) at 75 W RF power. Thereafter, the physicochemical properties of LMO films deposited using optimized RF power 100 W on stainless steel substrates has been studied in the thickness range of 70 to 300 nm as a case study. From the galvanostatic charge discharge experiments, a stable discharge capacity of 68 mu Ah mu m(-1) cm(-2) was achieved in the potential window 2.0-4.2 V vs. Li/Li+ tested up to 30 cycles. As the thickness increased, the specific discharge capacity started reducing with higher magnitude of capacity fading.
Controlling phase separation in La5/8-yPryCa3/8MnO3 (y=0.45) epitaxial thin films by strain disorder
Resumo:
Present study reveals that the length-scale of phase separation in La5/8-yPryCa3/8MnO3 thin films can be controlled by strain disorder invoked during the growth and relaxation process of film. Strain disorder provides an additional degree of freedom to tune colossal magnetoresistance. Magneto-transport measurements following cooling and heating in unequal fields protocol demonstrate that coherent strain stabilizes antiferromagnetic insulating phase, while strain disorder favors ferromagnetic metallic phase. Compared to bulk, antiferromagnetic-insulating phase freezes at lower temperatures in strain disordered films. Raman spectroscopy confirms the coexistence of charge-ordered-insulating and ferromagnetic-metallic phases which are structurally dissimilar and possess P2(1)/m and R-3C like symmetries, respectively. (C) 2015 AIP Publishing LLC.