924 resultados para Reduction of water losses
Resumo:
Most studies suggest that serotonin exerts an inhibitory control on the aggression process. According to experimental evidence, this amine also influences growth and development of the nervous tissue including serotoninergic neurons. Thus, the possibility exists that increased serotonin availability in young animals facilitates a long-lasting effect on aggressive responses. The present study aimed to investigate the aggressive behavior of adult rats (90-120 days) treated from the 1st to the 19th postnatal day with citalopram (CIT), a selective serotonin reuptake inhibitor (20 mg/kg, sc, every 3 days). Aggressive behavior was induced by placing a pair of rats (matched by weight) in a box (20 x 20 x 20 cm), and submitting them to a 20-min session of electric footshocks (five 1.6-mA - 2-s current pulses, separated by a 4-min intershock interval). When compared to the control group (rats treated for the same period with equivalent volumes of saline solution), the CIT group presented a 41.4% reduction in the duration of aggressive response. The results indicate that the repeated administration of CIT early in life reduces the aggressive behavior in adulthood and suggest that the increased brain serotoninergic activity could play a role in this effect.
Resumo:
Water and 1.8% NaCl intake was recorded daily in adult male rats (N = 6) submitted to four water deprivations plus four sodium appetite tests, each at the end of each 7-day interval, or in controls (non-deprived, N = 6). Water deprivation was achieved by removing water and 1.8% NaCl for 24 h. Water was then offered for 2 h. At the end of this period, 1.8% NaCl was also offered in addition to water (sodium appetite test). Average daily 1.8% NaCl intake was enhanced from 5.2 ± 1.0 to 15.7 ± 2.5 ml from the first to the fifth week in the experimental group and was unchanged in the control group. Daily water intake was not altered in either group. Thus, repeated episodes of water deprivation enhance daily NaCl intake.
Resumo:
Reverse osmosis and nanofiltration are among the most effective and widely used desalination and water softening technologies. They can also be used to treat mining wastewaters and are capable of producing water of extremely high purity, regardless of the high concentrations of toxic heavy metals and extreme pH and salinity. However, challenges with recovering the salts and metals from mining wastewaters in exploitable form, as well as problems with scaling still limit the process efficiency and the ratio of purified water recoverable from process waters. To address the problem of membrane scaling caused by calcium sulfate, batch filtration experiments with the Desal-5 DL nanofiltration membrane, three commercial antiscalants and actual mine process water from a copper mine were performed. The aim of these experiments was to find process conditions where maximum water recovery would be achieved before significant scaling or irreversible membrane fouling would occur and to further improve water recovery by addition of antiscalants. Water recovery of 70 % was reached with the experimental setups by optimizing process conditions. PC-504T antiscaling agent was determined to be the most effective of the three antiscalants used and the addition of 5 ppm of PC-504T allowed the water recovery to be further increased from 70 % to 85 % before major scaling was observed. In these conditions 92 % calcium rejection was achieved.
Resumo:
An electric system based on renewable energy faces challenges concerning the storage and utilization of energy due to the intermittent and seasonal nature of renewable energy sources. Wind and solar photovoltaic power productions are variable and difficult to predict, and thus electricity storage will be needed in the case of basic power production. Hydrogen’s energetic potential lies in its ability and versatility to store chemical energy, to serve as an energy carrier and as feedstock for various industries. Hydrogen is also used e.g. in the production of biofuels. The amount of energy produced during hydrogen combustion is higher than any other fuel’s on a mass basis with a higher-heating-value of 39.4 kWh/kg. However, even though hydrogen is the most abundant element in the universe, on Earth most hydrogen exists in molecular forms such as water. Therefore, hydrogen must be produced and there are various methods to do so. Today, the majority hydrogen comes from fossil fuels, mainly from steam methane reforming, and only about 4 % of global hydrogen comes from water electrolysis. Combination of electrolytic production of hydrogen from water and supply of renewable energy is attracting more interest due to the sustainability and the increased flexibility of the resulting energy system. The preferred option for intermittent hydrogen storage is pressurization in tanks since at ambient conditions the volumetric energy density of hydrogen is low, and pressurized tanks are efficient and affordable when the cycling rate is high. Pressurized hydrogen enables energy storage in larger capacities compared to battery technologies and additionally the energy can be stored for longer periods of time, on a time scale of months. In this thesis, the thermodynamics and electrochemistry associated with water electrolysis are described. The main water electrolysis technologies are presented with state-of-the-art specifications. Finally, a Power-to-Hydrogen infrastructure design for Lappeenranta University of Technology is presented. Laboratory setup for water electrolysis is specified and factors affecting its commissioning in Finland are presented.
Resumo:
Intestinal barrier dysfunction plays an important role in spontaneous bacterial peritonitis. In the present study, changes in the intestinal barrier with regard to levels of secretory immunoglobulin A (SIgA) and its components were studied in fulminant hepatic failure (FHF). Immunohistochemistry and double immunofluorescent staining were used to detect intestinal IgA, the secretory component (SC) and SIgA in patients with FHF (20 patients) and in an animal model with FHF (120 mice). Real-time PCR was used to detect intestinal SC mRNA in the animal model with FHF. Intestinal SIgA, IgA, and SC staining in patients with FHF was significantly weaker than in the normal control group (30 patients). Intestinal IgA and SC staining was significantly weaker in the animal model with FHF than in the control groups (normal saline: 30 mice; lipopolysaccharide: 50 mice; D-galactosamine: 50 mice; FHF: 120 mice). SC mRNA of the animal model with FHF at 2, 6, and 9 h after injection was 0.4 ± 0.02, 0.3 ± 0.01, 0.09 ± 0.01, respectively. SC mRNA of the animal model with FHF was significantly decreased compared to the normal saline group (1.0 ± 0.02) and lipopolysaccharide group (0.89 ± 0.01). The decrease in intestinal SIgA and SC induced failure of the intestinal immunologic barrier and the attenuation of gut immunity in the presence of FHF.
Resumo:
This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.
Resumo:
A recent study showed that miR-26a is downregulated in hepatocellular carcinoma tissues and that this downregulation is an independent predictor of survival. Interestingly, the same study also reported that miR-26a downregulation causes a concomitant elevation of IL-6 expression. Because miR-26a expression was found to be transcriptionally downregulated by oncogene c-Myc in various cancers, and the expression of c-Myc was increased by IL-6 stimulation, we hypothesized that IL-6 contributes to reduction of miR-26a in hepatocellular carcinoma. Serum IL-6 was measured by ELISA and miR-26a was detected by qRT-PCR. The data of 30 patients with hepatocellular carcinoma who had undergone surgical tumor resection revealed that serum IL-6 could be considered to be a predictor of survival up to 5 years for hepatocellular carcinoma patients (log-rank test, P < 0.05). We observed that the serum IL-6 concentration was inversely correlated with miR-26a expression in cancerous tissues (Pearson correlation test, r = -0.651, P < 0.01). Furthermore, by in vitro experiments with HepG2 cells, we showed that IL-6 stimulation can lead to miR-26a suppression via c-Myc activation, whereas in normal hepatocyte LO2 cells incubation with IL-6 had no significant effect on miR-26a expression. Taken together, these results indicate that miR-26a reduction in hepatocellular carcinoma might be due to IL-6 upregulation.
Resumo:
The objective of this study was to evaluate gastric emptying (GE) in pediatric patients with functional constipation. GE delay has been reported in adults with functional constipation. Gastric emptying studies were performed in 22 children with chronic constipation, fecal retention and fecal incontinence, while presenting fecal retention and after resuming regular bowel movements. Patients (18 boys, median age: 10 years; range: 7.2 to 12.7 years) were evaluated in a tertiary pediatric gastroenterology clinic. Gastric half-emptying time of water (reference range: 12 ± 3 min) was measured using a radionuclide technique immediately after first patient evaluation, when they presented fecal impaction (GE1), and when they achieved regular bowel movements (GE2), 12 ± 5 weeks after GE1. At study admission, 21 patients had reported dyspeptic symptoms, which were completely relieved after resuming regular bowel movements. Medians (and interquartile ranges) for GE1 and GE2 were not significantly different [27.0 (16) and 27.5 (21) min, respectively (P = 0.10)]. Delayed GE seems to be a common feature among children with chronic constipation and fecal retention. Resuming satisfactory bowel function and improvement in dyspeptic symptoms did not result in normalization of GE data.
Resumo:
The objective of this prospective study was to determine the plasma levels of nitric oxide (NO) in women with chronic pelvic pain secondary to endometriosis (n=24) and abdominal myofascial pain syndrome (n=16). NO levels were measured in plasma collected before and 1 month after treatment. Pretreatment NO levels (μM) were lower in healthy volunteers (47.0±12.7) than in women with myofascial pain (64.2±5.0, P=0.01) or endometriosis (99.5±12.9, P<0.0001). After treatment, plasma NO levels were reduced only in the endometriosis group (99.5±12.9 vs 61.6±5.9, P=0.002). A correlation between reduction of pain intensity and reduction of NO level was observed in the endometriosis group [correlation = 0.67 (95%CI = 0.35 to 0.85), P<0.0001]. Reduction of NO levels was associated with an increase of pain threshold in this group [correlation = -0.53 (-0.78 to -0.14), P<0.0001]. NO levels appeared elevated in women with chronic pelvic pain diagnosed as secondary to endometriosis, and were directly associated with reduction in pain intensity and increase in pain threshold after treatment. Further studies are needed to investigate the role of NO in the pathophysiology of pain in women with endometriosis and its eventual association with central sensitization.
Resumo:
This study proposes alternatives to the current methods of processing round-cooked lobster. The paralyzation of lobsters with direct electric shock consumes 10.526 x 10-3 kWh, which is significantly less than the 11 kWh required by the traditional thermal-shock method (based on 60 kg of lobsters). A better weight gain was obtained by immersion of paralyzed lobsters in brine before cooking. Systematic trials combining 3, 6, or 9% brine concentrations with immersion periods of 15, 30, or 45 minutes were performed in order to determine the best combinations. A mathematical model was designed to predict the weight gain of lobsters of different sizes in any combination of treatments. For small lobsters, a 45 minutes immersion in 6% brine gave the best response in terms of weight gain (4.7%) and cooking produced a weight loss of only 1.34% in relation to fresh lobster weight. For medium-sized lobsters, a 45 minutes immersion in 9% brine produced a weight gain of 2.64%, and cooking a weight gain of 1.08%. For large lobsters, a 45 minutes immersion in 6% brine produced a weight gain of 3.87%, and cooking a weight gain of 1.62%.
Resumo:
Rice flour was processed by extrusion cooking in the presence of variable contents of water and sucrose. The process was carried out in a twin-screw extruder under the conditions given by a centre rotational experimental design of second order. The effects of the independent variables, water content (27.9 to 42.1%), and sucrose content (0.1 to 19.9%) on the physicochemical properties of the extrudates were investigated. The water absorption index (WAI), water solubility index (WSI), volumetric expansion index (VEI), and bulk density (BD) were determined as dependent variables. BD was determined for samples before and after frying. An increase in water contents resulted in higher WAI and VEI, and lower WSI and BD for extrudates before and after frying. Higher sucrose levels led to increased values of WAI and VEI and to reduced values of WSI and BD. Both independent variables had significant influence on the physicochemical properties of rice flour extrudates. However, the sucrose content was the most significant. The interaction between these two independent variables and their quadratic effect were also important for the responses studied.
Resumo:
The carcass fast freezing is one of the aspects of great prominence to the final quality of pork. In order to reduce weight loss, two experiments were performed, in which the carcasses were monitored during 20 hours to evaluate the main variables involved during two different freezing processes (standard and proposed) as follows: microbiological quality, storage temperature, relative humidity (RH) and air velocity. In experiment I, the carcasses were submitted to a system using heat shock (2 hours in static tunnel at - 25 °C) and subsequently sent to the equalization chamber. In experiment II, the carcasses were submitted to the heat shock and stored in a chamber with RH between 80-85%. The chambers used in both experiments showed no change in the variables studied (internal temperature of 5 °C and air velocity of approximately 0.3 m/s). However, the relative humidity in the three chambers was evaluated and significant differences were found; as a consequence, high levels of weight loss were observed in both chambers In experiment II there was an increase of RH, which reduced the weight loss of the carcasses.
Resumo:
The Jackfruit tree is one of the most significant trees in tropical home gardens and perhaps the most widespread and useful tree in the important genus Artocarpus. The fruit is susceptible to mechanical and biological damage in the mature state, and some people find the aroma of the fruit objectionable, particularly in confined spaces. The dehydration process could be an alternative for the exploitation of this product, and the relationship between moisture content and water activity provides useful information for its processing and storage. The aim of this study was to determine the thermodynamic properties of the water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture content. Desorption isotherms of the different parts of the jackfruit (pulp, peduncle, mesocarp, peel, and seed) were determined at four different temperatures (313.15, 323.15, 333.15, and 343.15 K) in a water activity range of 0.02-0.753 using the static gravimetric method. Theoretical and empirical models were used to model the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to calculate the isosteric heat of sorption, the differential entropy, and Gibbs' free energy using the Guggenhein-Anderson-de Boer and Oswin models considering the effect of temperature on the hygroscopic equilibrium.
Resumo:
Abstract Sodium chloride in meat products provides microbiological stability and desirable technological and sensory effects. Therefore, the reduction of this ingredient is a challenge for the meat industry. The objective of this study was to evaluate the physicochemical and sensory characteristics of ready-to-eat sliced frozen roast beef with partial replacement of sodium chloride by a commercial additive mostly composed of potassium chloride. The analyses performed were chemical composition, cooking yield and post defrosting loss, microbiological evaluation and sensory analysis. There was higher moisture content (p < 0.05) in the control treatment (without the presence of the replacement additive) and all treatments were not different (p ≥ 0.05) in the cooking yield and in post-defrosting loss. The results of microbiological analysis are according to Brazilian Legislation. The sensory evaluation showed no difference between the control treatment and the T1 treatment (with the reduction of 35% of NaCl), while the T2 treatment (with reduction of 70% of NaCl) had the lowest average values in all attributes. The study showed that the reduction of 35% NaCl for commercial additive, mostly composed of potassium chloride, in roast beef is feasible since no changes were observed in sensory and technological characteristics evaluated.
Resumo:
The biotransformation of water insoluble substrates by mammalian and bacterial cells has been problematic, since these whole cell reactions are primarily performed in an aqueous environment The implementation of a twophase or encapsulated system has the advantages of providing a low water system along with the physiological environment the cells require to sustain themselves. Encapsulation of mammalian cells by formation of polyamide capsules via interfacial polymerization illustrated that the cells could not survive this type of encapsulation process. Biotransformation of the steroid spironolactone [3] by human kidney carcinoma cells was performed in a substrate-encapsulated system, yielding canrenone [4] in 70% yield. Encapsulation of nitrile-metabolizing Rhodococcus rhodochrous cells using a polyamide membrane yielded leaky capsules, but biotransformation of 2-(4- chlorophenyl)-3-methylbutyronitrile (CPIN) [6] in a free cell system yielded CPIN amide [7] in 40% yield and 94% ee. A two-phase biotransformation of CPIN consisting of a 5:1 ratio of tris buffer, pH 7.2 to octane respectively, gave CPIN acid [8] in 30% yield and 97% ee. It was concluded that Rhodococcus rhodochrous ATCC 17895 contained a nonselective nitrile hydratase and a highly selective amidase enzyme.