952 resultados para Recombination and trapping
Resumo:
Firn and polar ice cores offer the only direct palaeoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD(CH4) or δ2H(CH4)) 0.5 to 1.5 kg of ice was hitherto used. Here we present a method to improve precision and reduce the sample amount for δD(CH4) measurements in (ice core) air. Pre-concentrated methane is focused in front of a high temperature oven (pre-pyrolysis trapping), and molecular hydrogen formed by pyrolysis is trapped afterwards (post-pyrolysis trapping), both on a carbon-PLOT capillary at −196 °C. Argon, oxygen, nitrogen, carbon monoxide, unpyrolysed methane and krypton are trapped together with H2 and must be separated using a second short, cooled chromatographic column to ensure accurate results. Pre- and post-pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods, we estimate a precision of 2.3‰ for 350 g of ice (or roughly 30 mL – at standard temperature and pressure (STP) – of air) with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4) of about 6 mL (STP) or about 500 pmol of pure CH4.
Resumo:
Retroviruses uniquely co-package two copies of their genomic RNA within each virion. The two copies are used as templates for synthesis of the proviral DNA during the process of reverse transcription. Two template switches are required to complete retroviral DNA synthesis by the retroviral enzyme, reverse transcriptase. With two RNA genomes present in the virion, reverse transcriptase can make template switches utilizing only one of the RNA templates (intramolecular) or utilizing both RNA templates (intermolecular) during the process of reverse transcription. The results presented in this study show that during a single cycle of Moloney murine leukemia virus replication, both nonrecombinant and recombinant proviruses predominantly underwent intramolecular minus- and plus-strand transfers during the process of reverse transcription. This is the first study to examine the nature of the required template switches occurring during MLV replication and these results support the previous findings for SNV, and the hypothesis that the required template switches are ordered events. This study also determined rates for deletion and a rate of recombination for a single cycle of MLV replication. The rates reported here are comparable to the rates previously reported for both SNV and MLV. ^
Resumo:
Below are the results of the survey of the Iberian lynx obtained with camera-trapping between 2000 and 2007 in Sierra Morena. Two very important aspects of camera-trapping concerning its efficiency are also analyzed. The first is the evolution along years according to the camera-trapping type used of two efficiency indicators. The results obtained demonstrate that the most efficient lure is rabbit, though it is the less proven (92 trap-nights), followed by camera-trapping in the most frequent marking places (latrines). And, we propose as a novel the concept of use area as a spatial reference unit for the camera-trapping monitoring of non radio-marked animals is proposed, and its validity discussed.
Resumo:
The development of high efficiency laser diodes (LD) and light emitting diodes (LED) covering the 1.0 to 1.55 μm region of the spectra using GaAs heteroepitaxy has been long pursued. Due to the lack of materials that can be grown lattice-macthed to GaAs with bandgaps in the 1.0 to 1.55 μm region, quantum wells (QW) or quantum dots (QD) need be used. The most successful approach with QWs has been to use InGaAs, but one needs to add another element, such as N, to be able to reach 1.3/1.5μm. Even though LDs have been successfully demonstrated with the QW approach, using N leads to problems with compositional homogeneity across the wafer, and limited efficiency due to strong non-radiative recombination. The alternative approach of using InAs QDs is an attractive option, but once again, to reach the longest wavelengths one needs very large QDs and control over the size distribution and band alignment. In this work we demonstrate InAs/GaAsSb QDLEDs with high efficiencies, emitting from 1.1 to 1.52 μm, and we analyze the band alignment and carrier loss mechanisms that result from the presence of Sb in the capping layer.
Resumo:
The dielectrophoretic potential generated near the surface of a z-cut LiNbO3 by photovoltaic charge transport has been calculated for first time. The procedure and results are compared with the ones corresponding to x-cut. Diferences in the position, sharpness and time evolution are reported, and their implication on particle trapping are discussed.
3-D modeling of perimeter recombination in GaAs diodes and its influence on concentrator solar cells
Resumo:
This paper describes a complete modelling of the perimeter recombination of GaAs diodes which solves most unknowns and suppresses the limitations of previous models. Because of the three dimensional nature of the implemented model, it is able to simulate real devices. GaAs diodes on two epiwafers with different base doping levels, sizes and geometries, namely square and circular are manufactured. The validation of the model is achieved by fitting the experimental measurements of the dark IV curve of the manufactured GaAs diodes. A comprehensive 3-D description of the occurring phenomena affecting the perimeter recombination is supplied with the help of the model. Finally, the model is applied to concentrator GaAs solar cells to assess the impact of their doping level, size and geometry on the perimeter recombination.
Resumo:
When gene conversion is initiated by a double-strand break (DSB), any nonhomologous DNA that may be present at the ends must be removed before new DNA synthesis can be initiated. In Saccharomyces cerevisiae, removal of nonhomologous ends depends not only on the nucleotide excision repair endonuclease Rad1/Rad10 but also on Msh2 and Msh3, two proteins that are required to correct mismatched bp. These proteins have no effect when DSB ends are homologous to the donor, either in the kinetics of recombination or in the proportion of gene conversions associated with crossing-over. A second DSB repair pathway, single-strand annealing also requires Rad1/Rad10 and Msh2/Msh3, but reveals a difference in their roles. When the flanking homologous regions that anneal are 205 bp, the requirement for Msh2/Msh3 is as great as for Rad1/Rad10; but when the annealing partners are 1,170 bp, Msh2/Msh3 have little effect, while Rad1/Rad10 are still required. Mismatch repair proteins Msh6, Pms1, and Mlh1 are not required. We suggest Msh2 and Msh3 recognize not only heteroduplex loops and mismatched bp, but also branched DNA structures with a free 3′ tail.
Resumo:
Previous studies have shown that inactivation of the MutS or MutL mismatch repair enzymes increases the efficiency of homeologous recombination between Escherichia coli and Salmonella typhimurium and between S. typhimurium and Salmonella typhi. However, even in mutants defective for mismatch repair the recombination frequencies are 102- to 103-fold less than observed during homologous recombination between a donor and recipient of the same species. In addition, the length of DNA exchanged during transduction between S. typhimurium and S. typhi is less than in transductions between strains of S. typhimurium. In homeologous transductions, mutations in the recD gene increased the frequency of transduction and the length of DNA exchanged. Furthermore, in mutS recD double mutants the frequency of homeologous recombination was nearly as high as that seen during homologous recombination. The phenotypes of the mutants indicate that the gene products of mutS and recD act independently. Because S. typhimurium and S. typhi are ≈98–99% identical at the DNA sequence level, the inhibition of recombination is probably not due to a failure of RecA to initiate strand exchange. Instead, these results suggest that mismatches act at a subsequent step, possibly by slowing the rate of branch migration. Slowing the rate of branch migration may stimulate helicase proteins to unwind rather than extend the heteroduplex and leave uncomplexed donor DNA susceptible to further degradation by RecBCD exonuclease.
Resumo:
The activity of the M26 meiotic recombination hot spot of Schizosaccharomyces pombe depends on the presence of the heptamer 5′-ATGACGT-3′. Transplacement of DNA fragments containing the ade6-M26 gene to other chromosomal loci has previously demonstrated that the heptamer functions in some, but not all, transplacements, suggesting that hot spot activity depends on chromosomal context. In this study, hot spot activity was tested in the absence of gross DNA changes by using site-directed mutagenesis to create the heptamer sequence at novel locations in the genome. When created by mutagenesis of 1–4 bp in the ade6 and ura4 genes, the heptamer was active as a recombination hot spot, in an orientation-independent manner, at all locations tested. Thus, the heptamer sequence can create an active hot spot in other chromosomal contexts, provided that the gross chromosomal structure is not altered; this result is consistent with the hypothesis that a specific higher-order chromatin structure is required for M26 hot spot activity.
Resumo:
The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF–RecO–RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF–RecO–Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF–RecO–RecR complex functions as an anti-Ssb factor.
Resumo:
A strategy employing gene-trap mutagenesis and site-specific recombination (Cre/loxP) has been developed to isolate genes that are transcriptionally activated during programmed cell death. Interleukin-3 (IL-3)-dependent hematopoietic precursor cells (FDCP1) expressing a reporter plasmid that codes for herpes simplex virus–thymidine kinase, neomycin phosphotransferase, and murine IL-3 were transduced with a retroviral gene-trap vector carrying coding sequences for Cre-recombinase (Cre) in the U3 region. Activation of Cre expression from integrations into active genes resulted in a permanent switching between the selectable marker genes that converted the FDCP1 cells to factor independence. Selection for autonomous growth yielded recombinants in which Cre sequences in the U3 region were expressed from upstream cellular promoters. Because the expression of the marker genes is independent of the trapped cellular promoter, genes could be identified that were transiently induced by IL-3 withdrawal.
Resumo:
Two RecA homologs, Rad51 and Dmc1, assemble as cytologically visible complexes (foci) at the same sites on meiotic chromosomes. Time course analysis confirms that co-foci appear and disappear as the single predominant form. A large fraction of co-foci are eliminated in a red1 mutant, which is expected as a characteristic of the interhomolog-specific recombination pathway. Previous studies suggested that normal Dmc1 loading depends on Rad51. We show here that a mutation in TID1/RDH54, encoding a RAD54 homolog, reduces Rad51-Dmc1 colocalization relative to WT. A rad54 mutation, in contrast, has relatively little effect on RecA homolog foci except when strains also contain a tid1/rdh54 mutation. The role of Tid1/Rdh54 in coordinating RecA homolog assembly may be very direct, because Tid1/Rdh54 is known to physically bind both Dmc1 and Rad51. Also, Dmc1 foci appear early in a tid1/rdh54 mutant. Thus, Tid1 may normally act with Rad51 to promote ordered RecA homolog assembly by blocking Dmc1 until Rad51 is present. Finally, whereas double-staining foci predominate in WT nuclei, a subset of nuclei with expanded chromatin exhibit individual Rad51 and Dmc1 foci side-by-side, suggesting that a Rad51 homo-oligomer and a Dmc1 homo-oligomer assemble next to one another at the site of a single double-strand break (DSB) recombination intermediate.
Resumo:
Cucumber mosaic virus (CMV) and tomato aspermy virus (TAV) belong to the Cucumovirus genus. They have a tripartite genome consisting of single-stranded RNAs, designated 1, 2, and 3. Previous studies have shown that viable pseudorecombinants could be created in vitro by reciprocal exchanges between CMV and TAV RNA 3, but exchanges of RNAs 1 and 2 were replication deficient. When we coinoculated CMV RNAs 2 and 3 along with TAV RNAs 1 and 2 onto Nicotiana benthamiana, a hybrid quadripartite virus appeared that consisted of TAV RNA 1, CMV RNAs 2 and 3, and a distinctive chimeric RNA originating from a recombination between CMV RNA 2 and the 3′-terminal 320 nucleotides of TAV RNA 2. This hybrid arose by means of segment reassortment and RNA recombination to produce an interspecific hybrid with the TAV helicase subunit and the CMV polymerase subunit. To our knowledge, this is the first report demonstrating the evolution of a new plant or animal virus strain containing an interspecific hybrid replicase complex.