899 resultados para Real-Time Decision Support System
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The method of case-based reasoning for a solution of problems of real-time diagnostics and forecasting in intelligent decision support systems (IDSS) is considered. Special attention is drawn to case library structure for real-time IDSS (RT IDSS) and algorithm of k-nearest neighbors type. This work was supported by RFBR.
Resumo:
This paper studies the key aspects of an optical link which transmits a broadband microwave filter bank multicarrier (FBMC) signal. The study is presented in the context of creating an all-analogue real-time multigigabit orthogonal frequency division multiplexing electro-optical transceiver for short range and high-capacity data center networks. Passive microwave filters are used to perform the pulse shaping of the bit streams, allowing an orthogonal transmission without the necessity of digital signal processing (DSP). Accordingly, a cyclic prefix that would cause a reduction in the net data rate is not required. An experiment consisting of three orthogonally spaced 2.7 Gbaud quadrature phase shift keyed subchannels demonstrates that the spectral efficiency of traditional DSP-less subcarrier multiplexed links can be potentially doubled. A sensitivity of -29.5 dBm is achieved in a 1-km link.
Resumo:
The use of serious games in education and their pedagogical benefit is being widely recognized. However, effective integration of serious games in education depends on addressing two big challenges: the successful incorporation of motivation and engagement that can lead to learning; and the highly specialised skills associated with customised development to meet the required pedagogical objectives. This paper presents the Westminster Serious Games Platform (wmin-SGP) an authoring tool that allows educators/domain experts without games design and development technical skills to create bespoke roleplay simulations in three dimensional scenes featuring fully embodied virtual humans capable of verbal and non-verbal interaction with users fit for specific educational objectives. The paper presents the wmin-SGP system architecture and it evaluates its effectiveness in fulfilling its purpose via the implementation of two roleplay simulations, one for Politics and one for Law. In addition, it presents the results of two types of evaluation that address how successfully the wmin-SGP combines usability principles and game core drives based on the Octalysis gamification framework that lead to motivating games experiences. The evaluation results shows that the wmin-SGP: provides an intuitive environment and tools that support users without advanced technical skills to create in real-time bespoke roleplay simulations in advanced graphical interfaces; satisfies most of the usability principles; and provides balanced simulations based on the Octalysis framework core drives. The paper concludes with a discussion of future extension of this real time authoring tool and directions for further development of the Octalysis framework to address learning.
Resumo:
FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.
Resumo:
[EN]An active vision system to perform tracking of moving objects in real time is described. The main goal is to obtain a system integrating off-the-self components. These components includes a stereoscopic robotic-head, as active perception hardware; a DSP based board SDB C80, as massive data processor and image acquisition board; and finally, a Pentium PC running Windows NT that interconnects and manages the whole system. Real-time is achieved taking advantage of the special architecture of DSP. An evaluation of the performance is included.
Resumo:
[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...
Resumo:
This analysis estimates several economic benefits derived from national implementation of the National Oceanic and Atmospheric Administration’s Physical Oceanographic Real-Time System (PORTS®) at the 175 largest ports in the United States. Significant benefits were observed owing to: (1) lower commercial marine accident rates and resultant reductions in morbidity, mortality and property damage; (2) reduced pollution remediation costs; and, (3) increased productivity associated with operation of more fully loaded commercial vessels. Evidence also suggested additional benefits from heightened commercial and recreational fish catch and diminished recreational boating accidents. Annual gross benefits from 58 current PORTS® locations exceeded $217 million with an addition $83 million possible if installed at the largest remaining 117 ports in the United States. Over the ten-year economic life of PORTS® instruments, the present value for installation at all 175 ports could approach $2.5 billion.
Resumo:
In today's fast-paced and interconnected digital world, the data generated by an increasing number of applications is being modeled as dynamic graphs. The graph structure encodes relationships among data items, while the structural changes to the graphs as well as the continuous stream of information produced by the entities in these graphs make them dynamic in nature. Examples include social networks where users post status updates, images, videos, etc.; phone call networks where nodes may send text messages or place phone calls; road traffic networks where the traffic behavior of the road segments changes constantly, and so on. There is a tremendous value in storing, managing, and analyzing such dynamic graphs and deriving meaningful insights in real-time. However, a majority of the work in graph analytics assumes a static setting, and there is a lack of systematic study of the various dynamic scenarios, the complexity they impose on the analysis tasks, and the challenges in building efficient systems that can support such tasks at a large scale. In this dissertation, I design a unified streaming graph data management framework, and develop prototype systems to support increasingly complex tasks on dynamic graphs. In the first part, I focus on the management and querying of distributed graph data. I develop a hybrid replication policy that monitors the read-write frequencies of the nodes to decide dynamically what data to replicate, and whether to do eager or lazy replication in order to minimize network communication and support low-latency querying. In the second part, I study parallel execution of continuous neighborhood-driven aggregates, where each node aggregates the information generated in its neighborhoods. I build my system around the notion of an aggregation overlay graph, a pre-compiled data structure that enables sharing of partial aggregates across different queries, and also allows partial pre-computation of the aggregates to minimize the query latencies and increase throughput. Finally, I extend the framework to support continuous detection and analysis of activity-based subgraphs, where subgraphs could be specified using both graph structure as well as activity conditions on the nodes. The query specification tasks in my system are expressed using a set of active structural primitives, which allows the query evaluator to use a set of novel optimization techniques, thereby achieving high throughput. Overall, in this dissertation, I define and investigate a set of novel tasks on dynamic graphs, design scalable optimization techniques, build prototype systems, and show the effectiveness of the proposed techniques through extensive evaluation using large-scale real and synthetic datasets.
Resumo:
For various reasons, many Algol 68 compilers do not directly implement the parallel processing operations defined in the Revised Algol 68 Report. It is still possible however, to perform parallel processing, multitasking and simulation provided that the implementation permits the creation of a master routine for the coordination and initiation of processes under its control. The package described here is intended for real time applications and runs in conjunction with the Algol 68R system; it extends and develops the original Algol 68RT package, which was designed for use with multiplexers at the Royal Radar Establishment, Malvern. The facilities provided, in addition to the synchronising operations, include an interface to an ICL Communications Processor enabling the abstract processes to be realised as the interaction of several teletypes or visual display units with a real time program providing a useful service.
Resumo:
This thesis presents a system for visually analyzing the electromagnetic fields of the electrical machines in the energy conversion laboratory. The system basically utilizes the finite element method to achieve a real-time effect in the analysis of electrical machines during hands-on experimentation. The system developed is a tool to support the student's understanding of the electromagnetic field by calculating performance measures and operational concepts pertaining to the practical study of electrical machines. Energy conversion courses are fundamental in electrical engineering. The laboratory is conducted oriented to facilitate the practical application of the theory presented in class, enabling the student to use electromagnetic field solutions obtained numerically to calculate performance measures and operating characteristics. Laboratory experiments are utilized to help the students understand the electromagnetic concepts by the use of this visual and interactive analysis system. In this system, this understanding is accomplished while hands-on experimentation takes place in real-time.
Resumo:
In order to reduce serious health incidents, individuals with high risks need to be identified as early as possible so that effective intervention and preventive care can be provided. This requires regular and efficient assessments of risk within communities that are the first point of contacts for individuals. Clinical Decision Support Systems CDSSs have been developed to help with the task of risk assessment, however such systems and their underpinning classification models are tailored towards those with clinical expertise. Communities where regular risk assessments are required lack such expertise. This paper presents the continuation of GRiST research team efforts to disseminate clinical expertise to communities. Based on our earlier published findings, this paper introduces the framework and skeleton for a data collection and risk classification model that evaluates data redundancy in real-time, detects the risk-informative data and guides the risk assessors towards collecting those data. By doing so, it enables non-experts within the communities to conduct reliable Mental Health risk triage.
Resumo:
The road and transport industry in Australia and overseas has come a long way to understanding the impact of road traffic noise on the urban environment. Most road authorities now have guidelines to help assess and manage the impact of road traffic noise on noise-sensitive areas and development. While several economic studies across Australia and overseas have tried to value the impact of noise on property prices, decision-makers investing in road traffic noise management strategies have relatively limited historic data and case studies to go on. The perceived success of a noise management strategy currently relies largely on community expectations at a given time, and is not necessarily based on the analysis of the costs and benefits, or the long-term viability and value to the community of the proposed treatment options. With changing trends in urban design, it is essential that the 'whole-of-life' costs and benefits of noise ameliorative treatment options and strategies be identified and made available for decisionmakers in future investment considerations. For this reason, CRC for Construction Innovation Australia funded a research project, Noise Management in Urban Environments to help decision-makers with future road traffic noise management investment decisions. RMIT University and the Queensland Department of Main Roads (QDMR) have conducted the research work, in collaboration with the Queensland Department of Public Works, ARUP Pty Ltd, and the Queensland University of Technology. The research has formed the basis for the development of a decision-support software tool, and helped collate technical and costing data for known noise amelioration treatment options. We intend that the decision support software tool (DST) should help an investment decision-maker to be better informed of suitable noise ameliorative treatment options on a project-by-project basis and identify likely costs and benefits associated with each of those options. This handbook has been prepared as a procedural guide for conducting a comparative assessment of noise ameliorative options. The handbook outlines the methodology and assumptions adopted in the decision-support framework for the investment decision-maker and user of the DST. The DST has been developed to provide an integrated user-friendly interface between road traffic noise modelling software, the relevant assessment criteria and the options analysis process. A user guide for the DST is incorporated in this handbook.