997 resultados para Reactive Support


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented at Work in Progress Session, IEEE Real-Time Systems Symposium (RTSS 2015). 1 to 3, Dec, 2015. San Antonio, U.S.A..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented at Work in Progress Session, IEEE Real-Time Systems Symposium (RTSS 2015). 1 to 3, Dec, 2015. San Antonio, U.S.A..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quality of life is a concept influenced by social, economic, psychological, spiritual or medical state factors. More specifically, the perceived quality of an individual's daily life is an assessment of their well-being or lack of it. In this context, information technologies may help on the management of services for healthcare of chronic patients such as estimating the patient quality of life and helping the medical staff to take appropriate measures to increase each patient quality of life. This paper describes a Quality of Life estimation system developed using information technologies and the application of data mining algorithms to access the information of clinical data of patients with cancer from Otorhinolaryngology and Head and Neck services of an oncology institution. The system was evaluated with a sample composed of 3013 patients. The results achieved show that there are variables that may be significant predictors for the Quality of Life of the patient: years of smoking (p value 0.049) and size of the tumor (p value < 0.001). In order to assign the variables to the classification of the quality of life the best accuracy was obtained by applying the John Platt's sequential minimal optimization algorithm for training a support vector classifier. In conclusion data mining techniques allow having access to patients additional information helping the physicians to be able to know the quality of life and produce a well-informed clinical decision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the traditional paradigm, the large power plants supply the reactive power required at a transmission level and the capacitors and transformer tap changer were also used at a distribution level. However, in a near future will be necessary to schedule both active and reactive power at a distribution level, due to the high number of resources connected in distribution levels. This paper proposes a new multi-objective methodology to deal with the optimal resource scheduling considering the distributed generation, electric vehicles and capacitor banks for the joint active and reactive power scheduling. The proposed methodology considers the minimization of the cost (economic perspective) of all distributed resources, and the minimization of the voltage magnitude difference (technical perspective) in all buses. The Pareto front is determined and a fuzzy-based mechanism is applied to present the best compromise solution. The proposed methodology has been tested in the 33-bus distribution network. The case study shows the results of three different scenarios for the economic, technical, and multi-objective perspectives, and the results demonstrated the importance of incorporating the reactive scheduling in the distribution network using the multi-objective perspective to obtain the best compromise solution for the economic and technical perspectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Health promotion in hospital environments can be improved using the most recent information and communication technologies. The Internet connectivity to small sensor nodes carried by patients allows remote access to their bio-signals. To promote these features the healthcare wireless sensor networks (HWSN) are used. In these networks mobility support is a key issue in order to keep patients under realtime monitoring even when they move around. To keep sensors connected to the network, they should change their access points of attachment when patients move to a new coverage area along an infirmary. This process, called handover, is responsible for continuous network connectivity to the sensors. This paper presents a detailed performance evaluation study considering three handover mechanisms for healthcare scenarios (Hand4MAC, RSSI-based, and Backbone-based). The study was performed by simulation using several scenarios with different number of sensors and different moving velocities of sensor nodes. The results show that Hand4MAC is the best solution to guarantee almost continuous connectivity to sensor nodes with less energy consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is unquestionable that an effective decision concerning the usage of a certain environmental clean-up technology should be conveniently supported. Significant amount of scientific work focussing on the reduction of nitrate concentration in drinking water by both metallic iron and nanomaterials and their usage in permeable reactive barriers has been worldwide published over the last two decades. This work aims to present in a systematic review of the most relevant research done on the removal of nitrate from groundwater using nanosized iron based permeable reactive barriers. The research was based on scientific papers published between 2004 and June 2014. It was performed using 16 combinations of keywords in 34 databases, according to PRISMA statement guidelines. Independent reviewers validated the selection criteria. From the 4161 records filtered, 45 met the selection criteria and were selected to be included in this review. This study's outcomes show that the permeable reactive barriers are, indeed, a suitable technology for denitrification and with good performance record but the long-term impact of the use of nanosized zero valent iron in this remediation process, in both on the environment and on the human health, is far to be conveniently known. As a consequence, further work is required on this matter, so that nanosized iron based permeable reactive barriers for the removal of nitrate from drinking water can be genuinely considered an eco-efficient technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation to obtain the Master degree in Electrical Engineering and Computer Science

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Lesions at ipsilateral systems related to postural control at ipsilesional side, may justify the lower performance of stroke subjects during walking. Purpose: To analyse bilateral ankle antagonist coactivation during double-support in stroke subjects. Methods: Sixteen (8 females; 8 males) subjects with a first isquemic stroke, and twenty two controls (12 females; 10 males) participated in this study. The double support phase was assessed through ground reaction forces and electromyography of ankle muscles was assessed in both limbs. Results: Ipsilesional limb presented statistical significant differences from control when assuming specific roles during double support, being the tibialis anterior and soleus pair the one in which this atypical behavior was more pronounced. Conclusion: The ipsilesional limb presents a dysfunctional behavior when a higher postural control activity was demanded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time monitoring applications may be used in a wireless sensor network (WSN) and may generate packet flows with strict quality of service requirements in terms of delay, jitter, or packet loss. When strict delays are imposed from source to destination, the packets must be delivered at the destination within an end-to-end delay (EED) hard limit in order to be considered useful. Since the WSN nodes are scarce both in processing and energy resources, it is desirable that they only transport useful data, as this contributes to enhance the overall network performance and to improve energy efficiency. In this paper, we propose a novel cross-layer admission control (CLAC) mechanism to enhance the network performance and increase energy efficiency of a WSN, by avoiding the transmission of potentially useless packets. The CLAC mechanism uses an estimation technique to preview packets EED, and decides to forward a packet only if it is expected to meet the EED deadline defined by the application, dropping it otherwise. The results obtained show that CLAC enhances the network performance by increasing the useful packet delivery ratio in high network loads and improves the energy efficiency in every network load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os Mercados Eletrónicos atingiram uma complexidade e nível de sofisticação tão elevados, que tornaram inadequados os modelos de software convencionais. Estes mercados são caracterizados por serem abertos, dinâmicos e competitivos, e constituídos por várias entidades independentes e heterogéneas. Tais entidades desempenham os seus papéis de forma autónoma, seguindo os seus objetivos, reagindo às ocorrências do ambiente em que se inserem e interagindo umas com as outras. Esta realidade levou a que existisse por parte da comunidade científica um especial interesse no estudo da negociação automática executada por agentes de software [Zhang et al., 2011]. No entanto, a diversidade dos atores envolvidos pode levar à existência de diferentes conceptualizações das suas necessidades e capacidades dando origem a incompatibilidades semânticas, que podem prejudicar a negociação e impedir a ocorrência de transações que satisfaçam as partes envolvidas. Os novos mercados devem, assim, possuir mecanismos que lhes permitam exibir novas capacidades, nomeadamente a capacidade de auxiliar na comunicação entre os diferentes agentes. Pelo que, é defendido neste trabalho que os mercados devem oferecer serviços de ontologias que permitam facilitar a interoperabilidade entre os agentes. No entanto, os humanos tendem a ser relutantes em aceitar a conceptualização de outros, a não ser que sejam convencidos de que poderão conseguir um bom negócio. Neste contexto, a aplicação e exploração de relações capturadas em redes sociais pode resultar no estabelecimento de relações de confiança entre vendedores e consumidores, e ao mesmo tempo, conduzir a um aumento da eficiência da negociação e consequentemente na satisfação das partes envolvidas. O sistema AEMOS é uma plataforma de comércio eletrónico baseada em agentes que inclui serviços de ontologias, mais especificamente, serviços de alinhamento de ontologias, incluindo a recomendação de possíveis alinhamentos entre as ontologias dos parceiros de negociação. Este sistema inclui também uma componente baseada numa rede social, que é construída aplicando técnicas de análise de redes socias sobre informação recolhida pelo mercado, e que permite melhorar a recomendação de alinhamentos e auxiliar os agentes na sua escolha. Neste trabalho são apresentados o desenvolvimento e implementação do sistema AEMOS, mais concretamente: • É proposto um novo modelo para comércio eletrónico baseado em agentes que disponibiliza serviços de ontologias; • Adicionalmente propõem-se o uso de redes sociais emergentes para captar e explorar informação sobre relações entre os diferentes parceiros de negócio; • É definida e implementada uma componente de serviços de ontologias que é capaz de: • o Sugerir alinhamentos entre ontologias para pares de agentes; • o Traduzir mensagens escritas de acordo com uma ontologia em mensagens escritas de acordo com outra, utilizando alinhamentos previamente aprovados; • o Melhorar os seus próprios serviços recorrendo às funcionalidades disponibilizadas pela componente de redes sociais; • É definida e implementada uma componente de redes sociais que: • o É capaz de construir e gerir um grafo de relações de proximidade entre agentes, e de relações de adequação de alinhamentos a agentes, tendo em conta os perfis, comportamento e interação dos agentes, bem como a cobertura e utilização dos alinhamentos; • o Explora e adapta técnicas e algoritmos de análise de redes sociais às várias fases dos processos do mercado eletrónico. A implementação e experimentação do modelo proposto demonstra como a colaboração entre os diferentes agentes pode ser vantajosa na melhoria do desempenho do sistema e como a inclusão e combinação de serviços de ontologias e redes sociais se reflete na eficiência da negociação de transações e na dinâmica do mercado como um todo.