979 resultados para Randomly amplified polymorphic DNA (RAPD)
Resumo:
Fabry disease is an X-linked lysosomal disorder due to a-galactosidase A deficiency that causes storage of globotriaosylceramide. The gene coding for this lysosomal enzyme is located on the long arm of the X chromosome, in region Xq21.33-Xq22. Disease progression leads to vascular disease secondary to involvement of kidney, heart and the central nervous system. Detection of female carriers based solely on enzyme assays is often inconclusive. Therefore, mutation analysis is a valuable tool for diagnosis and genetic counseling. Many mutations of the a-galactosidase A gene have been reported with high genetic heterogeneity, being most mutations private found in only one family. The disease is panethnic, and estimates of incidence range from about 1 in 40,000 to 60,000 males. Our objective was to describe the analysis of 6 male and 7 female individuals belonging to 4 different Fabry disease families by automated sequencing of the seven exons of the a-galactosidase gene. Sequencing was performed using PCR fragments for each exon amplified from DNA extracted from peripheral blood. Three known mutations and one previously described in another Brazilian family were detected. Of 7 female relatives studied, 4 were carriers. Although the present study confirms the heterogeneity of mutations in Fabry disease, the finding of the same mutation previously detected in another Fabry family from our region raises the possibility of some founder effect, or genetic drift. Finally, the present study highlights the importance of molecular analysis for carrier detection and genetic counseling.
Resumo:
Lactobacilli isolated from the vaginal tract of women with and without bacterial vaginosis (BV) were identified and characterized for the production of antagonists. Bacterial samples were isolated from healthy women (N = 16), from patients with clinical complaints but without BV (N = 30), and from patients with BV (N = 32). Identification was performed using amplified ribosomal DNA restriction analysis. Production of antagonistic compounds was evaluated by the double-layer diffusion technique using Gram-positive (N = 9) and Gram-negative bacteria (N = 6) as well as yeast (N = 5) as indicator strains. Of a total of 147 isolates, 133 were identified as pertaining to the genus Lactobacillus. Lactobacillus crispatus was the species most frequently recovered, followed by L. johnsonii and L. jensenii. Statistical analysis showed that L. crispatus was more frequent in individuals without BV (P < 0.05). A higher production of antagonists was noted in L. crispatus isolates from healthy women (P < 0.05). More acidic local pH and higher H2O2 production by isolated lactobacilli from healthy women suggest these mechanisms as the possible cause of this antagonism. In conclusion, a significant correlation was detected between the presence and antagonistic properties of certain species of Lactobacillus and the clinical status of the patients.
Resumo:
Soil community genomics or metagenomics is employed in this study to analyze the evolutionary related - ness of mangrove microbial community. The metagenomic DNA was isolated from mangrove sediment and 16SrDNA was amplified using universal primers. The amplicons were ligated into pTZ57R/T cloning vector and transformed onto E. coli JM109 host cells. The recombinant plasmids were isolated from positive clones and the insert was confirmed by its reamplification. The amplicons were subjected to Amplified Ribosomal DNA Restriction Analysis (ARDRA) using three different tetra cutter restriction enzymes namely Sau3A1, Hha1 and HpaII. The 16SrDNA insert were sequenced and their identity was determined. The sequences were submitted to NCBI database and accession numbers obtained. The phylo - genetic tree was constructed based on Neighbor-Joining technique. Clones belonged to two major phyla of the bacterial domain, namely Firmicutes and Proteobacteria, with members of Firmicutes predominating. The microbial diversity of the mangrove sediment was explored in this manner.
Resumo:
La Fibrosis Quística es la enfermedad autosómica recesiva mas frecuente en caucásicos. En Colombia no se conoce la incidencia de la enfermedad, pero investigaciones del grupo de la Universidad del Rosario indican que podría ser relativamente alta. Objetivo: Determinar la incidencia de afectados por Fibrosis Quística en una muestra de recién nacidos de la ciudad de Bogotá. Metodología: Se analizan 8.297 muestras de sangre de cordón umbilical y se comparan tres protocolos de tamizaje neonatal: TIR/TIR, TIR/DNA y TIR/DNA/TIR. Resultados: El presente trabajo muestra una incidencia de 1 en 8.297 afectados en la muestra analizada. Conclusiones: Dada la relativamente alta incidencia demostrada en Bogotá, se justifica la implementación de Tamizaje Neonatal para Fibrosis Quística en Colombia.
Resumo:
The natural diversity of the eft operons, encoding the heat-labile toxin LT-I (LT), carried by enterotoxigenic Escherichia coli (ETEC) strains isolated from humans was investigated. For many years, LT was supposed to be represented by a rather conserved toxin, and one derivative, produced by the reference H10407 strain, was intensively studied either as a virulence factor or as a vaccine adjuvant. Amplicons encompassing the two LT-encoding genes (eltA and eltB) of 51 human-derived ETEC strains, either LT+ (25 strains) only or LT+/ST+ (26 strains), isolated from asymptomatic (24 strains) or diarrheic (27 strains) subjects, were subjected to restriction fragment length polymorphism (RFLP) analysis and DNA sequencing. Seven polymorphic RFLP types of the H10407 strain were detected with six (BsaI, DdeI, HhaI, HincII, HphI, and MspI) restriction enzymes. Additionally, the single-nucleotide polymorphic analysis revealed 50 base changes in the eft operon, including 21 polymorphic sites at eltA and 9 at eltB. Based on the deduced amino acid sequences, 16 LT types were identified, including LT1, expressed by the H10407 strain and 23 other strains belonging to seven different serotypes, and LT2, expressed by 11 strains of six different serotypes. In vitro experiments carried out with purified toxins indicated that no significant differences in GM1-binding affinity could be detected among LT1, LT2, and LT4. However, LT4, but not other toxin types, showed reduced toxic activities measured either in vitro with cultured cells (Y-1 cells) or in vivo in rabbit ligated ileal loops. Collectively, these results indicate that the natural diversity of LTs produced by wild-type ETEC strains isolated from human hosts is considerably larger than previously assumed and may impact the pathogeneses of the strains and the epidemiology of the disease.
Resumo:
Analysis of the phylogenetic relationships among trypanosomes from vertebrates and invertebrates disclosed a new lineage of trypanosomes circulating among anurans and sand flies that share the same ecotopes in Brazilian Amazonia. This assemblage of closely related trypanosomes was determined by comparing whole SSU rDNA sequences of anuran trypanosomes from the Brazilian biomes of Amazonia, the Pantanal, and the Atlantic Forest and from Europe, North America, and Africa, and from trypanosomes of sand flies from Amazonia. Phylogenetic trees based on maximum likelihood and parsimony corroborated the positioning of all new anuran trypanosomes in the aquatic clade but did not support the monophyly of anuran trypanosomes. However, all analyses always supported four major clades (An01-04) of anuran trypanosomes. Clade An04 is composed of trypanosomes from exotic anurans. Isolates in clades An01 and An02 were from Brazilian frogs and toads captured in the three biomes studied, Amazonia, the Pantanal and the Atlantic Forest. Clade An01 contains mostly isolates from Hylidae whereas clade An02 comprises mostly isolates from Bufonidae; and clade An03 contains trypanosomes from sand flies and anurans of Bufonidae, Leptodactylidae, and Leiuperidae exclusively from Amazonia. To our knowledge, this is the first study describing morphological and growth features, and molecular phylogenetic affiliation of trypanosomes from anurans and phlebotomines, incriminating these flies as invertebrate hosts and probably also as important vectors of Amazonian terrestrial anuran trypanosomes.
Resumo:
O monitoramento da diversidade genética é fundamental em um programa de repovoamento. Avaliouse a diversidade genética de pacu Piaractus mesopotamicus (Holmberg, 1887) em duas estações de piscicultura em Andirá -Paraná, Brasil, utilizadas no programa de repovoamento do Rio Paranapanema. Foram amplificados seis loci microssatélite para avaliar 60 amostras de nadadeira. O estoque de reprodutores B apresentou maior número de alelos e heterozigose (alelos: 22 e H O: 0,628) que o estoque de reprodutores A (alelos: 21 e H O: 0,600). Alelos com baixos níveis de frequência foram observados nos dois estoques. Os coeficientes positivos de endogamia no locus Pme2 (estoque A: F IS = 0,30 e estoque B: F IS = 0,20), Pme5 (estoque B: F IS = 0,15), Pme14 (estoque A: F IS = 0,07) e Pme28 (estoque A: F IS = 0,24 e estoque B: F IS = 0,20), indicaram deficiência de heterozigotos. Foi detectada a presença de um alelo nulo no lócus Pme2. As estimativas negativas nos loci Pme4 (estoque A: F IS = -0,43 e estoque B: F IS= -0,37), Pme5 (estoque A: F IS = - 0,11), Pme14 (estoque B: F IS = - 0,15) e Pme32 (estoque A: F IS = - 0,93 e estoque B: F IS = - 0,60) foram indicativas de excesso de heterozigotos. Foi evidenciado desequilíbrio de ligação e riqueza alélica baixa só no estoque A. A diversidade genética de Nei foi alta nos dois estoques. A distância (0,085) e identidade (0,918) genética mostraram similaridade entre os estoques, o qual reflete uma possível origem comum. 6,05% da variância genética total foi devida a diferenças entre os estoques. Foi observado um recente efeito gargalo nos dois estoques. Os resultados indicaram uma alta diversidade genética nos estoques de reprodutores e baixa diferenciação genética entre eles, o que foi causado pelo manejo reprodutivo das pisciculturas, redução do tamanho populacional e intercâmbio genético entre as pisciculturas.
Resumo:
O manejo de plantas daninhas em ambientes aquáticos requer cuidado diferencial e específico, a fim de evitar a contaminação ou alteração nas funções dos corpos hídricos e otimização do custo-benefício das operações. O estudo das características genéticas de populações de plantas daninhas aquáticas fornece informações que podem auxiliar no seu controle e manejo. A alface-d'água é uma planta aquática flutuante livre amplamente distribuída em todo o Brasil, mas é em ambientes aquáticos eutrofizados que essa e outras espécies de rápido desenvolvimento causam problemas sociais e econômicos, devido à grande massa vegetal produzida. Este estudo caracterizou geneticamente populações de alface-d'água coletadas em 15 reservatórios de hidrelétricas (Barra Bonita-BAB, Bariri-BAR, Ibitinga-IBI, Chavantes-CHA, Salto Grande-SAG, Jurumirim-JUR, Promissão-PRO Jaguari-JAG, Nova Avanhandava-NAV, Mogi-Guaçu-MOG, Limoeiro-LIM, Três Irmãos-TRI, Ilha Solteira-ILS, Jupiá-JUP e Porto Primavera-PPR) do Estado de São Paulo. As análises foram realizadas no NUPAM (Núcleo de Pesquisas Avançadas em Matologia), ligado à FCA/UNESP, campus de Botucatu-SP. A técnica utilizada no estudo da diversidade genética foi o RAPD. Os materiais amostrados nos reservatórios do Estado foram muito similares em sua maioria. As populações de NAV, MOG, IBI, JUR, PRO e CHA foram idênticas geneticamente. BAB e SAG, LIM e TRI também foram muito parecidas, apresentando índice de distância genética de 0,0093 e 0,0178, respectivamente. A grande maioria dos reservatórios estudados (93%) apresentou distâncias inferiores a 0,30, formando um grupo definido. No entanto, a população de Jupiá, em média, foi a que apresentou maior diversidade genética (0,45).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigated the diversity of endophytic fungi found on grape (Vitis labrusca cv. Niagara Rosada) leaves collected from Salesopolis, SP, Brazil. The fungi were isolated and characterized by amplified ribosomal DNA restriction analysis, followed by sequencing of the ITS1-5.8S-ITS2 rDNA. In addition, the ability of these endophytic fungi to inhibit the grapevine pathogen Fusarium oxysporum f. sp herbemontis was determined in vitro. We also observed that the climatic factors, such as temperature and rainfall, have no effect on the frequency of infection by endophytic fungi. The endophytic fungal community that was identified included Aporospora terricola, Aureobasidium pullulans, Bjerkandera adusta, Colletotrichum boninense, C. gloeosporioides, Diaporthe helianthi, D. phaseolorum, Epicoccum nigrum, Flavodon flavus, Fusarium subglutinans, F. sacchari, Guignardia mangiferae, Lenzites elegans, Paraphaeosphaeria pilleata, Phanerochaete sordida, Phyllosticta sp, Pleurotus nebrodensis, Preussia africana, Tinctoporellus epiniltinus, and Xylaria berteri. Among these isolates, two, C. gloeosporioides and F. flavus, showed potential antagonistic activity against F. oxysporum f. sp herbemontis. We suggest the involvement of the fungal endophyte community of V. labrusca in protecting the host plant against pathogenic Fusarium species. Possibly, some endophytic isolates could be selected for the development of biological control agents for grape fungal disease; alternatively, management strategies could be tailored to increase these beneficial fungi.
Resumo:
INTRODUCTION: The symptoms of Brazilian borreliosis resemble the clinical manifestations of Lyme disease (LD). However, there are differences between the two in terms of epidemiological and laboratory findings. Primers usually employed to diagnose LD have failed to detect Borrelia strains in Brazil. OBJECTIVE: We aimed to identify the Brazilian Borrelia using a conserved gene that synthesizes the flagellar hook (flgE) of Borrelia burgdorferi sensu lato. METHOD: Three patients presenting with erythema migrans and positive epidemiological histories were recruited for the study. Blood samples were collected, and the DNA was extracted by commercial kits. RESULTS: The gene flgE was amplified from DNA of all selected patients. Upon sequencing, these positive samples revealed 99% homology to B. burgdorferi flgE. CONCLUSION: These results support the existence of borreliosis in Brazil. However, it is unclear whether this borreliosis is caused by a genetically modified B. burgdorferi sensu stricto or by a new species of Borrelia spp.
Resumo:
It was decided to carry out a morphological and molecular characterization of the Italian Alternaria isolatescollected from apple , and evaluate their pathogenicity and subsequently combining the data collected. The strain collection (174 isolates) was constructed by collecting material (received from extension service personnel) between June and August of 2007, 2008, and 2009. A Preliminary bioassays were performed on detached plant materials (fruit and leaf wounded and unwounded), belonging to the Golden cultivar, with two different kind of inoculation (conidial suspension and conidial filtrate). Symptoms were monitored daily and a value of pathogenicity score (P.S.) was assigned on the basis of the diameter of the necrotic area that developed. On the basis of the bioassays, the number of isolates to undergo further molecular analysis was restricted to a representative set of single spore strains (44 strains). Morphological characteristics of the colony and sporulation pattern were determined according to previous systematic work on small-spored Alternaria spp. (Pryor and Michaelides, 2002 and Hong et al., 2006). Reference strains (Alternaria alternata, Alternaria tenuissima, Alternaria arborescens and four Japanese strains of Alternaria alternata mali pathotype), used in the study were kindly provided by Prof. Barry Pryor, who allows a open access to his own fungal collection. Molecular characterization was performed combining and comparing different data sets obtained from distinct molecular approach: 1) investigation of specific loci and 2) fingerprinting based on diverse randomly selected polymorphic sites of the genome. As concern the single locus analysis, it was chosen to sequence the EndoPG partial gene and three anonymous region (OPA1-3, OPA2- and OPa10-2). These markers has revealed a powerful tool in the latter systematic works on small-spored Alternaria spp. In fact, as reported in literature small-spored Alternaria taxonomy is complicated due to the inability to resolve evolutionary relationships among the taxa because of the lack of variability in the markers commonly used in fungi systematic. The three data set together provided the necessary variation to establish the phylogenetic relationships among the Italian isolates of Alternaria spp. On Italian strains these markers showed a variable number of informative sites (ranging from 7 for EndoPg to 85 for OPA1-3) and the parsimony analysis produced different tree topologies all concordant to define A. arborescens as a mophyletic clade. Fingerprinting analysis (nine ISSR primers and eight AFLP primers combination) led to the same result: a monophyleic A. arborescens clade and one clade containing both A. tenuissima and the A. alternata strains. This first attempt to characterize Italian Alternaria species recovered from apple produced concordant results with what was already described in a similar phylogenetic study on pistachio (Pryor and Michaelides, 2002), on walnut and hazelnut (Hong et al., 2006), apple (Kang et al., 2002) and citurus (Peever et al., 2004). Together with these studies, this research demonstrates that the three morphological groups are widely distributed and occupy similar ecological niches. Furthermore, this research suggest that these Alternaria species exhibit a similar infection pattern despite the taxonomic and pathogenic differences. The molecular characterization of the pathogens is a fundamental step to understanding the disease that is spreading in the apple orchards of the north Italy. At the beginning the causal agent was considered as Alteraria alternata (Marshall and Bertagnoll, 2006). Their preliminary studies purposed a pathogenic system related to the synthesis of toxins. Experimental data of our bioassays suggest an analogous hypothesis, considering that symptoms could be induced after inoculating plant material with solely the filtrate from pathogenic strains. Moreover, positive PCR reactions using AM-toxin gene specific primers, designed for identification of apple infecting Alternaria pathovar, led to a hypothesis that a host specific toxin (toxins) were involved. It remains an intriguing challenge to discover or not if the agent of the “Italian disease” is the same of the one previously typified as Alternaria mali, casual agent of the apple blotch disease.
Resumo:
La Valvola Aortica Bicuspide (BAV) rappresenta la più comune anomalia cardiaca congenita, con un’incidenza dello 0,5%-2% nella popolazione generale. Si caratterizza per la presenza di due cuspidi valvolari anziché tre e comprende diverse forme. La BAV è frequentemente associata agli aneurismi dell’aorta toracica (TAA). La dilatazione dell’aorta espone al rischio di sviluppare le complicanze aortiche acute. Materiali e metodi Sono stati reclutati 20 probandi consecutivi sottoposti a chirurgia della valvola aortica e dell'aorta ascendente presso l'Unità di Chirurgia Cardiaca di Policlinico S.Orsola-Malpighi di TAA associata a BAV. Sono stati esclusi individui con una condizione sindromica predisponente l’aneurisma aortico. Ciascun familiare maggiorenne di primo grado è stato arruolato nello studio. L’analisi di mutazioni dell’intero gene ACTA2 è stata eseguita con la tecnica del “bidirectional direct sequencing”. Nelle forme familiari, l’intera porzione codificante del genoma è stata eseguita usando l’exome sequencing. Risultati Dopo il sequenziamento di tutti i 20 esoni e giunzioni di splicing di ACTA2 nei 20 probandi, non è stata individuata alcuna mutazione. Settantasette familiari di primo grado sono stati arruolati. Sono state identificate cinque forme familiari. In una famiglia è stata trovata una mutazione del gene MYH11 non ritenuta patogenetica. Conclusioni La mancanza di mutazioni, sia nelle forme sporadiche sia in quelle familiari, ci suggerisce che questo gene non è coinvolto nello sviluppo della BAV e TAA e, l’associazione che è stata riportata deve essere considerata occasionale. L’architettura genetica della BAV verosimilmente dovrebbe consistere in svariate differenti varianti genetiche che interagiscono in maniera additiva nel determinare un aumento del rischio.
Resumo:
Aims The effect Of anthropogenic landscape fragmentation on the genetic diversity and adaptive potential of plant populations is a major issue in conservation biology. However, little is known about the partitioning of genetic diversity in alpine species, which occur in naturally fragmented habitats. Here, we, investigate molecular patterns of three alpine plants (Epilobium fleischeri, Geum reptans and Campanula thyrsoides) across Switzerland and ask whether Spatial isolation has led to high levels of populations differentiation, increasing over distance, and a decrease of within-population variability. We further hypothesize that file contrasting potential for long-distance dispersal (LDD) of Seed in these Species will considerably influence and explain diversity partitioning. Methods For each study species, we Sampled 20-23 individuals from each of 20-32 populations across entire Switzerland. We applied Random Amplified Polymorphic Dimorphism markers to assess genetic diversity within (Nei's expected heterozygosity, H-e; percentage of polymorphic hands, P-P) and among (analysis of molecular variance, Phi(st)) populations and correlated population size and altitude with within-populalion diversity. Spatial patterns of genetic relatedness were investigated using Mantel tests and standardized major axis regression as well as unweighted pair group method with arithmetic mean cluster analyses and Monmonier's algorithm. To avoid known biases, We standardized the numbers of populations, individuals and markers using multiple random reductions. We modelled LDD with a high alpine wind data set using the terminal velocity and height of seed release as key parameters. Additionally, we assessed a number of important life-history traits and factors that potentially influence genetic diversity partitioning (e.g. breeding system, longevity and population size). Important findings For all three species, We found a significant isolation-by-distance relationship but only a moderately high differentiation among populations (Phi(st): 22.7, 48 and 16.8%, for E. fleischeri, G. reptans and C. thyrsoides, respectively). Within-population diversity (H-c: 0.19-0.21, P-p: 62-75%) was not reduced in comparison to known results from lowland species and even small populations with < 50 reproductive individuals contained high levels of genetic diversity. We further found no indication that a high long-distance seed dispersal potential enhances genetic connectivity among populations. Gene flow seems to have a strong stochastic component causing large dissimilarity between population pairs irrespective of the spatial distance. Our results suggest that other life-history traits, especially the breeding System, may play an important role in genetic diversity partitioning. We conclude that spatial isolation in the alpine environment has a strong influence on population relatedness but that a number of factors can considerably influence the strength of this relationship.
Resumo:
The development of a completely annotated sheep genome sequence is a key need for understanding the phylogenetic relationships and genetic diversity among the many different sheep breeds worldwide and for identifying genes controlling economically and physiologically important traits. The ovine genome sequence assembly will be crucial for developing optimized breeding programs based on highly productive, healthy sheep phenotypes that are adapted to modern breeding and production conditions. Scientists and breeders around the globe have been contributing to this goal by generating genomic and cDNA libraries, performing genome-wide and trait-associated analyses of polymorphism, expression analysis, genome sequencing, and by developing virtual and physical comparative maps. The International Sheep Genomics Consortium (ISGC), an informal network of sheep genomics researchers, is playing a major role in coordinating many of these activities. In addition to serving as an essential tool for monitoring chromosome abnormalities in specific sheep populations, ovine molecular cytogenetics provides physical anchors which link and order genome regions, such as sequence contigs, genes and polymorphic DNA markers to ovine chromosomes. Likewise, molecular cytogenetics can contribute to the process of defining evolutionary breakpoints between related species. The selective expansion of the sheep cytogenetic map, using loci to connect maps and identify chromosome bands, can substantially contribute to improving the quality of the annotated sheep genome sequence and will also accelerate its assembly. Furthermore, identifying major morphological chromosome anomalies and micro-rearrangements, such as gene duplications or deletions, that might occur between different sheep breeds and other Ovis species will also be important to understand the diversity of sheep chromosome structure and its implications for cross-breeding. To date, 566 loci have been assigned to specific chromosome regions in sheep and the new cytogenetic map is presented as part of this review. This review will also summarize the current cytogenomic status of the sheep genome, describe current activities in the sheep cytogenomics research sector, and will discuss the cytogenomics data in context with other major sheep genomics projects.