907 resultados para Random graphs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the following problem: given a set of jobs and a set of people with preferences over the jobs, what is the optimal way of matching people to jobs? Here we consider the notion of popularity. A matching M is popular if there is no matching M' such that more people prefer M' to M than the other way around. Determining whether a given instance admits a popular matching and, if so, finding one, was studied by Abraham et al. (SIAM J. Comput. 37(4):1030-1045, 2007). If there is no popular matching, a reasonable substitute is a matching whose unpopularity is bounded. We consider two measures of unpopularity-unpopularity factor denoted by u(M) and unpopularity margin denoted by g(M). McCutchen recently showed that computing a matching M with the minimum value of u(M) or g(M) is NP-hard, and that if G does not admit a popular matching, then we have u(M) >= 2 for all matchings M in G. Here we show that a matching M that achieves u(M) = 2 can be computed in O(m root n) time (where m is the number of edges in G and n is the number of nodes) provided a certain graph H admits a matching that matches all people. We also describe a sequence of graphs: H = H(2), H(3), ... , H(k) such that if H(k) admits a matching that matches all people, then we can compute in O(km root n) time a matching M such that u(M) <= k - 1 and g(M) <= n(1 - 2/k). Simulation results suggest that our algorithm finds a matching with low unpopularity in random instances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given an unweighted undirected or directed graph with n vertices, m edges and edge connectivity c, we present a new deterministic algorithm for edge splitting. Our algorithm splits-off any specified subset S of vertices satisfying standard conditions (even degree for the undirected case and in-degree ≥ out-degree for the directed case) while maintaining connectivity c for vertices outside S in Õ(m+nc2) time for an undirected graph and Õ(mc) time for a directed graph. This improves the current best deterministic time bounds due to Gabow [8], who splits-off a single vertex in Õ(nc2+m) time for an undirected graph and Õ(mc) time for a directed graph. Further, for appropriate ranges of n, c, |S| it improves the current best randomized bounds due to Benczúr and Karger [2], who split-off a single vertex in an undirected graph in Õ(n2) Monte Carlo time. We give two applications of our edge splitting algorithms. Our first application is a sub-quadratic (in n) algorithm to construct Edmonds' arborescences. A classical result of Edmonds [5] shows that an unweighted directed graph with c edge-disjoint paths from any particular vertex r to every other vertex has exactly c edge-disjoint arborescences rooted at r. For a c edge connected unweighted undirected graph, the same theorem holds on the digraph obtained by replacing each undirected edge by two directed edges, one in each direction. The current fastest construction of these arborescences by Gabow [7] takes Õ(n2c2) time. Our algorithm takes Õ(nc3+m) time for the undirected case and Õ(nc4+mc) time for the directed case. The second application of our splitting algorithm is a new Steiner edge connectivity algorithm for undirected graphs which matches the best known bound of Õ(nc2 + m) time due to Bhalgat et al [3]. Finally, our algorithm can also be viewed as an alternative proof for existential edge splitting theorems due to Lovász [9] and Mader [11].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two online algorithms for maintaining a topological order of a directed acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm takes O(m 1/2) amortized time per arc and our second algorithm takes O(n 2.5/m) amortized time per arc, where n is the number of vertices and m is the total number of arcs. For sparse graphs, our O(m 1/2) bound improves the best previous bound by a factor of logn and is tight to within a constant factor for a natural class of algorithms that includes all the existing ones. Our main insight is that the two-way search method of previous algorithms does not require an ordered search, but can be more general, allowing us to avoid the use of heaps (priority queues). Instead, the deterministic version of our algorithm uses (approximate) median-finding; the randomized version of our algorithm uses uniform random sampling. For dense graphs, our O(n 2.5/m) bound improves the best previously published bound by a factor of n 1/4 and a recent bound obtained independently of our work by a factor of logn. Our main insight is that graph search is wasteful when the graph is dense and can be avoided by searching the topological order space instead. Our algorithms extend to the maintenance of strong components, in the same asymptotic time bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d=2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article [ A. Patel and M. A. Rahaman Phys. Rev. A 82 032330 (2010)] provides an O(√NlnN) algorithm, which is not optimal. The scaling behavior can be improved to O(√NlnN) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi Phys. Rev. A 78 012310 (2008). We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a fluid queue in discrete time with random service rate. Such a queue has been used in several recent studies on wireless networks where the packets can be arbitrarily fragmented. We provide conditions on finiteness of moments of stationary delay, its Laplace-Stieltjes transform and various approximations under heavy traffic. Results are extended to the case where the wireless link can transmit in only a few slots during a frame.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a fast algorithm for computing a Gomory-Hu tree or cut tree for an unweighted undirected graph G = (V,E). The expected running time of our algorithm is Õ(mc) where |E| = m and c is the maximum u-vedge connectivity, where u,v ∈ V. When the input graph is also simple (i.e., it has no parallel edges), then the u-v edge connectivity for each pair of vertices u and v is at most n-1; so the expected running time of our algorithm for simple unweighted graphs is Õ(mn).All the algorithms currently known for constructing a Gomory-Hu tree [8,9] use n-1 minimum s-t cut (i.e., max flow) subroutines. This in conjunction with the current fastest Õ(n20/9) max flow algorithm due to Karger and Levine [11] yields the current best running time of Õ(n20/9n) for Gomory-Hu tree construction on simpleunweighted graphs with m edges and n vertices. Thus we present the first Õ(mn) algorithm for constructing a Gomory-Hu tree for simple unweighted graphs.We do not use a max flow subroutine here; we present an efficient tree packing algorithm for computing Steiner edge connectivity and use this algorithm as our main subroutine. The advantage in using a tree packing algorithm for constructing a Gomory-Hu tree is that the work done in computing a minimum Steiner cut for a Steiner set S ⊆ V can be reused for computing a minimum Steiner cut for certain Steiner sets S' ⊆ S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Let G = (V,E) be a weighted undirected graph, with non-negative edge weights. We consider the problem of efficiently computing approximate distances between all pairs of vertices in G. While many efficient algorithms are known for this problem in unweighted graphs, not many results are known for this problem in weighted graphs. Zwick [14] showed that for any fixed ε> 0, stretch 1 1 + ε distances between all pairs of vertices in a weighted directed graph on n vertices can be computed in Õ(n ω) time, where ω < 2.376 is the exponent of matrix multiplication and n is the number of vertices. It is known that finding distances of stretch less than 2 between all pairs of vertices in G is at least as hard as Boolean matrix multiplication of two n×n matrices. It is also known that all-pairs stretch 3 distances can be computed in Õ(n 2) time and all-pairs stretch 7/3 distances can be computed in Õ(n 7/3) time. Here we consider efficient algorithms for the problem of computing all-pairs stretch (2+ε) distances in G, for any 0 < ε < 1. We show that all pairs stretch (2 + ε) distances for any fixed ε> 0 in G can be computed in expected time O(n 9/4 logn). This algorithm uses a fast rectangular matrix multiplication subroutine. We also present a combinatorial algorithm (that is, it does not use fast matrix multiplication) with expected running time O(n 9/4) for computing all-pairs stretch 5/2 distances in G. 1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boxicity of a graph H, denoted by box(H), is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in R(k). In this paper we show that for a line graph G of a multigraph, box(G) <= 2 Delta (G)(inverted right perpendicularlog(2) log(2) Delta(G)inverted left perpendicular + 3) + 1, where Delta(G) denotes the maximum degree of G. Since G is a line graph, Delta(G) <= 2(chi (G) - 1), where chi (G) denotes the chromatic number of G, and therefore, box(G) = 0(chi (G) log(2) log(2) (chi (G))). For the d-dimensional hypercube Q(d), we prove that box(Q(d)) >= 1/2 (inverted right perpendicularlog(2) log(2) dinverted left perpendicular + 1). The question of finding a nontrivial lower bound for box(Q(d)) was left open by Chandran and Sivadasan in [L. Sunil Chandran, Naveen Sivadasan, The cubicity of Hypercube Graphs. Discrete Mathematics 308 (23) (2008) 5795-5800]. The above results are consequences of bounds that we obtain for the boxicity of a fully subdivided graph (a graph that can be obtained by subdividing every edge of a graph exactly once). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A k-dimensional box is a Cartesian product R(1)x...xR(k) where each R(i) is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. That is, two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of arcs on a circle. We show that if G is a circular arc graph which admits a circular arc representation in which no arc has length at least pi(alpha-1/alpha) for some alpha is an element of N(>= 2), then box(G) <= alpha (Here the arcs are considered with respect to a unit circle). From this result we show that if G has maximum degree Delta < [n(alpha-1)/2 alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. We also demonstrate a graph having box(G) > alpha but with Delta = n (alpha-1)/2 alpha + n/2 alpha(alpha+1) + (alpha+2). For a proper circular arc graph G, we show that if Delta < [n(alpha-1)/alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. Let r be the cardinality of the minimum overlap set, i.e. the minimum number of arcs passing through any point on the circle, with respect to some circular arc representation of G. We show that for any circular arc graph G, box(G) <= r + 1 and this bound is tight. We show that if G admits a circular arc representation in which no family of k <= 3 arcs covers the circle, then box(G) <= 3 and if G admits a circular arc representation in which no family of k <= 4 arcs covers the circle, then box(G) <= 2. We also show that both these bounds are tight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in $1.5 (\Delta + 2) \ln n$ dimensions, where $\Delta$ is the maximum degree of G. We also show that $\boxi(G) \le (\Delta + 2) \ln n$ for any graph G. Our bound is tight up to a factor of $\ln n$. We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm. Though our general upper bound is in terms of maximum degree $\Delta$, we show that for almost all graphs on n vertices, its boxicity is upper bound by $c\cdot(d_{av} + 1) \ln n$ where d_{av} is the average degree and c is a small constant. Also, we show that for any graph G, $\boxi(G) \le \sqrt{8 n d_{av} \ln n}$, which is tight up to a factor of $b \sqrt{\ln n}$ for a constant b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider evolving exponential RGGs in one dimension and characterize the time dependent behavior of some of their topological properties. We consider two evolution models and study one of them detail while providing a summary of the results for the other. In the first model, the inter-nodal gaps evolve according to an exponential AR(1) process that makes the stationary distribution of the node locations exponential. For this model we obtain the one-step conditional connectivity probabilities and extend it to the k-step case. Finite and asymptotic analysis are given. We then obtain the k-step connectivity probability conditioned on the network being disconnected. We also derive the pmf of the first passage time for a connected network to become disconnected. We then describe a random birth-death model where at each instant, the node locations evolve according to an AR(1) process. In addition, a random node is allowed to die while giving birth to a node at another location. We derive properties similar to those above.