935 resultados para RNA analysis
Resumo:
To investigate whether alterations in RNA editing (an enzymatic base-specific change to the RNA sequence during primary transcript formation from DNA) of neurotransmitter receptor genes and of transmembrane ion channel genes play a role in human temporal lobe epilepsy (TLE), this exploratory study analyzed 14 known cerebral editing sites in RNA extracted from the brain tissue of 41 patients who underwent surgery for mesial TLE, 23 with hippocampal sclerosis (MTLE+HS). Because intraoperatively sampled RNA cannot be obtained from healthy controls and the best feasible control is identically sampled RNA from patients with a clinically shorter history of epilepsy, the primary aim of the study was to assess the correlation between epilepsy duration and RNA editing in the homogenous group of MTLE+HS. At the functionally relevant I/V site of the voltage-gated potassium channel Kv1.1, an inverse correlation of RNA editing was found with epilepsy duration (r=-0.52, p=0.01) but not with patient age at surgery, suggesting a specific association with either the epileptic process itself or its antiepileptic medication history. No significant correlations were found between RNA editing and clinical parameters at other sites within glutamate receptor or serotonin 2C receptor gene transcripts. An "all-or-none" (≥95% or ≤5%) editing pattern at most or all sites was discovered in 2 patients. As a secondary part of the study, RNA editing was also analyzed as in the previous literature where up to now, few single editing sites were compared with differently obtained RNA from inhomogenous patient groups and autopsies, and by measuring editing changes in our mouse model. The present screening study is first to identify an editing site correlating with a clinical parameter, and to also provide an estimate of the possible effect size at other sites, which is a prerequisite for power analysis needed in planning future studies.
Resumo:
It has been highlighted that RNA quality and appropriate reference gene selection is crucial for the interpretation of RT-qPCR results in human placental samples. In this context we investigated the effect of RNA degradation on the mRNA abundance of seven frequently used reference genes in 119 human placental samples. Combining RNA integrity measurements, RT-qPCR analysis and mathematical modeling we found major differences regarding the effect of RNA degradation on the measured expression levels between the different reference genes. Furthermore, we demonstrated that a modified RNA extraction method significantly improved RNA quality and consequently increased transcript levels of all reference genes.
Resumo:
BACKGROUND: Highly active antiretroviral therapy (HAART) for the treatment of HIV infection was introduced a decade ago. We aimed to examine trends in the characteristics of patients starting HAART in Europe and North America, and their treatment response and short-term prognosis. METHODS: We analysed data from 22,217 treatment-naive HIV-1-infected adults who had started HAART and were followed up in one of 12 cohort studies. The probability of reaching 500 or less HIV-1 RNA copies per mL by 6 months, and the change in CD4 cell counts, were analysed for patients starting HAART in 1995-96, 1997, 1998, 1999, 2000, 2001, and 2002-03. The primary endpoints were the hazard ratios for AIDS and for death from all causes in the first year of HAART, which were estimated using Cox regression. RESULTS: The proportion of heterosexually infected patients increased from 20% in 1995-96 to 47% in 2002-03, and the proportion of women from 16% to 32%. The median CD4 cell count when starting HAART increased from 170 cells per muL in 1995-96 to 269 cells per muL in 1998 but then decreased to around 200 cells per muL. In 1995-96, 58% achieved HIV-1 RNA of 500 copies per mL or less by 6 months compared with 83% in 2002-03. Compared with 1998, adjusted hazard ratios for AIDS were 1.07 (95% CI 0.84-1.36) in 1995-96 and 1.35 (1.06-1.71) in 2002-03. Corresponding figures for death were 0.87 (0.56-1.36) and 0.96 (0.61-1.51). INTERPRETATION: Virological response after starting HAART improved over calendar years, but such improvement has not translated into a decrease in mortality.
Resumo:
OBJECTIVE: To estimate the prognosis over 5 years of HIV-1-infected, treatment-naive patients starting HAART, taking into account the immunological and virological response to therapy. DESIGN: A collaborative analysis of data from 12 cohorts in Europe and North America on 20,379 adults who started HAART between 1995 and 2003. METHODS: Parametric survival models were used to predict the cumulative incidence at 5 years of a new AIDS-defining event or death, and death alone, first from the start of HAART and second from 6 months after the start of HAART. Data were analysed by intention-to-continue-treatment, ignoring treatment changes and interruptions. RESULTS: During 61 798 person-years of follow-up, 1005 patients died and an additional 1303 developed AIDS. A total of 10 046 (49%) patients started HAART either with a CD4 cell count of less than 200 cells/microl or with a diagnosis of AIDS. The 5-year risk of AIDS or death (death alone) from the start of HAART ranged from 5.6 to 77% (1.8-65%), depending on age, CD4 cell count, HIV-1-RNA level, clinical stage, and history of injection drug use. From 6 months the corresponding figures were 4.1-99% for AIDS or death and 1.3-96% for death alone. CONCLUSION: On the basis of data collected routinely in HIV care, prognostic models with high discriminatory power over 5 years were developed for patients starting HAART in industrialized countries. A risk calculator that produces estimates for progression rates at years 1 to 5 after starting HAART is available from www.art-cohort-collaboration.org.
Resumo:
PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.
Resumo:
BACKGROUND: Ornithine transcarbamylase (OTC) deficiency is the most common inborn error of urea metabolism that can lead to hyperammonemic crises and orotic aciduria. To date, a total of 341 causative mutations within the OTC gene have been described. However, in about 20% of the patients with enzymatically confirmed OTC deficiency no mutation can be detected when sequencing of genomic DNA analyzing exons and adjacent intronic segments of the OTC gene is performed. METHODS: Standard genomic DNA analysis of the OTC gene in five consecutive patients from five families revealed no mutation. Hence, liver tissue was obtained by needle sampling or open biopsy and RNA extracted from liver was analyzed. RESULTS: Complex rearrangements of the OTC transcript (three insertions and two deletions) were found in all five patients. CONCLUSION: In patients with a strong suspicion of OTC deficiency despite normal results of sequencing exonic regions of the OTC gene, characterization of liver OTC mRNA is highly effective in resolving the genotype. Liver tissue sampling by needle aspiration allows for both enzymatic analysis and RNA based diagnostics of OTC deficiency.
Resumo:
Bidirectional promoters regulate adjacent genes organized in a divergent fashion (head to head orientation). Several Reports pertaining to bidirectional promoters on a genomic scale exists in mammals. This work provides the essential background on theoretical and experimental work to carry out a genomic scale analysis of bidirectional promoters in plants. A computational study was performed to identify putative bidirectional promoters and the over-represented cis-regulatory motifs from three sequenced plant genomes: rice (Oryza sativa), Arabidopsis thaliana, and Populus trichocarpa using the Plant Cis-acting Regulatory DNA Elements (PLACE) and PLANT CARE databases. Over-represented motifs along with their possible function were described with the help of a few conserved representative putative bidirectional promoters from the three model plants. By doing so a foundation was laid for the experimental evaluation of bidirectional promoters in plants. A novel Agrobacterium tumefaciens mediated transient expression assay (AmTEA) was developed for young plants of different cereal species and the model dicot Arabidopsis thaliana. AmTEA was evaluated using five promoters (six constructs) and two reporter genes, gus and egfp. Efficacy and stability of AmTEA was compared with stable transgenics using the Arabidopsis DEAD-box RNA helicase family gene promoter. AmTEA was primarily developed to overcome the many problems associated with the development of transgenics and expression studies in plants. Finally a possible mechanism for the bidirectional activity of bidirectional promoters was highlighted. Deletion analysis using promoter-reporter gene constructs identified three rice promoters to be bidirectional. Regulatory elements located in the 5’- untranslated regions (UTR) of one of the genes of the divergent gene pair were found to be responsible for their bidirectional ctivity
Resumo:
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.
Resumo:
Protein phosphorylation is involved in posttranslational control of essentially all biological processes. Using mass spectrometry, recent analyses of whole phosphoproteomes led to the identification of numerous new phosphorylation sites. However, the function of most of these sites remained unknown. We chose the Drosophila Bicaudal-D protein to estimate the importance of individual phosphorylation events. Being involved in different cellular processes, BicD is required for oocyte determination, for RNA transport during oogenesis and embryogenesis, and for photoreceptor nuclei migration in the developing eye. The numerous roles of BicD and the available evidence for functional importance of BicD phosphorylation led us to identify eight phosphorylation sites of BicD, and we tested a total of 14 identified and suspected phosphoserine residues for their functional importance in vivo in flies. Surprisingly, all these serines turned out to be dispensable for providing sufficient basal BicD activity for normal growth and development. However, in a genetically sensitized background where the BicD(A40V) protein variant provides only partial activity, serine 103 substitutions are not neutral anymore, but show surprising differences. The S103D substitution completely inactivates the protein, whereas S103A behaves neutral, and the S103F substitution, isolated in a genetic screen, restores BicD(A40V) function. Our results suggest that many BicD phosphorylation events may either be fortuitous or play a modulating function as shown for Ser(103). Remarkably, amongst the Drosophila serines we found phosphorylated, Ser(103) is the only one that is fully conserved in mammalian BicD.
Resumo:
BACKGROUND: With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. METHODS: To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA) and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR) and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425). RESULTS: siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT) expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. CONCLUSION: In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly.
Resumo:
Primaquine (PQ). a clinically important derivative of 8-aminoquinoline used against the hepatic stages (hypnozoites) of Plasmodium vivax and Plasmodium ova Ie. was studied to evaluate and compare between mRNA expression. and biochemical and histological parameters of hepatic stress in adult Swiss mice (Mus musculus). Following single oral dose of PQ (40 mglkg. bw). alanine aminotransferase (ALT) and aspartate aminotransferase (AST) along with hematoxylin and eosin stained liver sections did not show any signs of hepatic stress at 6. 12 and 24 h except for ALT activity at 6 h. However. analysis at RNA transcript level revealed consistent and significant deregulation (p<0.01 and twofold) of 16 probes corresponding to important cellular processes such as protein transportation. transcription regulation. intracellular signaling. protein synthesis, hematopoiesis, cell adhesion and cell proliferation. Pathway analysis identified large number of affected genes corresponding to 40 Gene Ontology terms having a z score greaibr than 2. These results indicate that PQ at high doses may affect gene expression in liver and may produce undesirable outcomes if consumed for longer durations.
Resumo:
BACKGROUND In many resource-limited settings monitoring of combination antiretroviral therapy (cART) is based on the current CD4 count, with limited access to HIV RNA tests or laboratory diagnostics. We examined whether the CD4 count slope over 6 months could provide additional prognostic information. METHODS We analyzed data from a large multicohort study in South Africa, where HIV RNA is routinely monitored. Adult HIV-positive patients initiating cART between 2003 and 2010 were included. Mortality was analyzed in Cox models; CD4 count slope by HIV RNA level was assessed using linear mixed models. RESULTS About 44,829 patients (median age: 35 years, 58% female, median CD4 count at cART initiation: 116 cells/mm) were followed up for a median of 1.9 years, with 3706 deaths. Mean CD4 count slopes per week ranged from 1.4 [95% confidence interval (CI): 1.2 to 1.6] cells per cubic millimeter when HIV RNA was <400 copies per milliliter to -0.32 (95% CI: -0.47 to -0.18) cells per cubic millimeter with >100,000 copies per milliliter. The association of CD4 slope with mortality depended on current CD4 count: the adjusted hazard ratio (aHRs) comparing a >25% increase over 6 months with a >25% decrease was 0.68 (95% CI: 0.58 to 0.79) at <100 cells per cubic millimeter but 1.11 (95% CI: 0.78 to 1.58) at 201-350 cells per cubic millimeter. In contrast, the aHR for current CD4 count, comparing >350 with <100 cells per cubic millimeter, was 0.10 (95% CI: 0.05 to 0.20). CONCLUSIONS Absolute CD4 count remains a strong risk for mortality with a stable effect size over the first 4 years of cART. However, CD4 count slope and HIV RNA provide independently added to the model.
Resumo:
The platform-independent software package consisting of the oligonucleotide mass assembler (OMA) and the oligonucleotide peak analyzer (OPA) was created to support the analysis of oligonucleotide mass spectra. It calculates all theoretically possible fragments of a given input sequence and annotates it to an experimental spectrum, thus, saving a large amount of manual processing time. The software performs analysis of precursor and product ion spectra of oligonucleotides and their analogues comprising user-defined modifications of the backbone, the nucleobases, or the sugar moiety, as well as adducts with metal ions or drugs. The ability to expand the library of building blocks and to implement individual structural variations makes it extremely useful for supporting the analysis of therapeutically active compounds. The functionality of the software tool is demonstrated on the examples of a platinated doublestranded oligonucleotide and a modified RNA sequence. Experiments also reveal the unique dissociation behavior of platinated higher-order DNA structures.
Resumo:
We introduce ciliated protozoa, and more specifically the stichotrichous ciliates Oxytricha and Stylonychia, as biological model systems for the analysis of programmed DNA-reorganization processes during nuclear differentiation. These include DNA excision, DNA elimination, reordering of gene segments and specific gene amplification. We show that small nuclear RNAs specify DNA sequences to be excised or retained, but also discuss the need for a RNA template molecule derived from the parental nucleus for these processes. This RNA template guides reordering of gene segments to become functional genes and determines gene copy number in the differentiated nucleus. Since the template is derived from the parental macronucleus, gene reordering and DNA amplification are inherited in a non-Mendelian epigenetic manner.
Resumo:
BACKGROUND Cytology is an excellent method with which to diagnose preinvasive lesions of the uterine cervix, but it suffers from limited specificity for clinically significant lesions. Supplementary methods might predict the natural course of the detected lesions. The objective of the current study was to test whether a multicolor fluorescence in situ hybridization (FISH) assay might help to stratify abnormal results of Papanicolaou tests. METHODS A total of 219 liquid-based cytology specimens of low-grade squamous intraepithelial lesions (LSIL), 49 atypical squamous cells of undetermined significance (ASCUS) specimens, 52 high-grade squamous intraepithelial lesion (HSIL) specimens, and 50 normal samples were assessed by FISH with probes for the human papillomavirus (HPV), MYC, and telomerase RNA component (TERC). Subtyping of HPV by polymerase chain reaction (PCR) was performed in a subset of cases (n=206). RESULTS There was a significant correlation found between HPV detection by FISH and PCR (P<.0001). In patients with LSILs, the presence of HPV detected by FISH was significantly associated with disease progression (P<.0001). An increased MYC and/or TERC gene copy number (>2 signals in>10% of cells) prevailed in 43% of ASCUS specimens and was more frequent in HSIL (85%) than in LSIL (33%) (HSIL vs LSIL: P<.0001). Increased TERC gene copy number was significantly correlated with progression of LSIL (P<.01; odds ratio, 7.44; area under the receiver operating characteristic curve, 0.73; positive predictive value, 0.30; negative predictive value, 0.94) CONCLUSIONS: The detection of HPV by FISH analysis is feasible in liquid-based cytology and is significantly correlated with HPV analysis by PCR. The analysis of TERC gene copy number may be useful for risk stratification in patients with LSIL.