1000 resultados para Quantum spins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin sulphide (SnS) quantum dots of size ranging from 2.4 to 14.4 nm are prepared by chemical precipitation method in aqueous media. Growth of the SnS particles is monitored by controlling the deposition time. Both XRD and SAED patterns confirm that the particles possess orthorhombic structure. The uncapped SnS particles showed secondary phases like Sn2S3 and SnS2 which is visible in the SAED pattern. From the electrochemical characterization. HOMO-LUMO levels of both TiO2 and SnS are determined and the band alignment is found to be favorable for electron transfer from SnS to TiO2. Moreover, the HOMO-LUMO levels varied for different particle sizes. Solar cell is fabricated by sensitizing porous TiO2 thin film with SnS QDs. Cell structure is characterized with and without buffer layer between FTO and TiO2. Without the buffer layer, cell showed an open circuit voltage (V-oc) of 504 mV and short circuit current density (J(sc)) of 2.3 mA/cm(2) under AM1.5 condition. The low fill factor of this structure (15%) is seen to be increased drastically to 51%, on the incorporation of the buffer layer. The cell characteristics are analyzed using two different size quantum dots. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum coherence can affect the thermodynamics of small quantum systems. Coherences have been shown to affect the power generated by a quantum heat engine (QHE) which is coupled to two thermal photon reservoirs and to an additional cavity mode. We show that the fluctuations of the heat exchanged between the QHE and the reservoirs strongly depend on quantum coherence, especially when the engine operates as a refrigerator, i.e., heat current flows from the cold bath to the hot bath. Intriguingly, we find that the ratio of positive and negative (with respect to the thermodynamic force) fluctuations in the heat current satisfies a universal coherence-independent fluctuation theorem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, a Schiff base N'(1),N'(3)-bis(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-d icarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant K-b of 2.6 x 10(4) M-1, 5.7 x 10(4) M-1 and 4.5 x 10(4) M-1, respectively and they exhibited potent photo-damage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The H-1 NMR spectroscopic discrimination of enantiomers in the solution state and the measurement of enantiomeric composition is most often hindered due to either very small chemical shift differences between the discriminated peaks or severe overlap of transitions from other chemically non-equivalent protons. In addition the use of chiral auxiliaries such as, crown ether and chiral lanthanide shift reagent may often cause enormous line broadening or give little degree of discrimination beyond the crown ether substrate ratio, hampering the discrimination. In circumventing such problems we are proposing the utilization of the difference in the additive values of all the chemical shifts of a scalar coupled spin system. The excitation and detection of appropriate highest quantum coherence yields the measurable difference in the frequencies between two transitions, one pertaining to each enantiomer in the maximum quantum dimension permitting their discrimination and the F-2 cross section at each of these frequencies yields an enantiopure spectrum. The advantage of the utility of the proposed method is demonstrated on several chiral compounds where the conventional one dimensional H-1 NMR spectra fail to differentiate the enantiomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study here different regions in phase diagrams of the spin-1/2, spin-1 and spin-3/2 one-dimensional antiferromagnetic Heisenberg systems with frustration (next-nearest-neighbor interaction J(2)) and dimerization (delta). In particular, we analyze the behaviors of the bipartite entanglement entropy and fidelity at the gapless to gapped phase transitions and across the lines separating different phases in the J(2)-delta plane. All the calculations in this work are based on numerical exact diagonalizations of finite systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a comprehensive analysis of the renormalization of noncommutative phi(4) scalar field theories on the Groenewold-Moyal plane. These scalar field theories are twisted Poincare invariant. Our main results are that these scalar field theories are renormalizable, free of UV/IR mixing, possess the same fixed points and beta-functions for the couplings as their commutative counterparts. We also argue that similar results hold true for any generic noncommutative field theory with polynomial interactions and involving only pure matter fields. A secondary aim of this work is to provide a comprehensive review of different approaches for the computation of the noncommutative S-matrix: noncommutative interaction picture and noncommutative Lehmann-Symanzik-Zimmermann formalism. DOI: 10.1103/PhysRevD.87.064014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following up the work of 1] on deformed algebras, we present a class of Poincare invariant quantum field theories with particles having deformed internal symmetries. The twisted quantum fields discussed in this work satisfy commutation relations different from the usual bosonic/fermionic commutation relations. Such twisted fields by construction are nonlocal in nature. Despite this nonlocality we show that it is possible to construct interaction Hamiltonians which satisfy cluster decomposition principle and are Lorentz invariant. We further illustrate these ideas by considering global SU(N) symmetries. Specifically we show that twisted internal symmetries can provide a natural-framework for the discussion of the marginal deformations (beta-deformations) of the N = 4 SUSY theories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

8MeV electron irradiation effects on thioglycolic acid (TGA)-capped CdTe quantum dots (QD) are discussed in this study. CdTe QDs were characterized using x-ray diffraction (XRD), transmission electron microscope (TEM) and x-ray photoelectron spectroscopy (XPS). Steady-state and time-resolved emission spectroscopy and UV-visible absorption spectroscopy were performed before and after irradiation with 8MeV electrons. XRD and TEM confirm the growth of TGA-capped CdTe QDs. The photoemission wavelength, intensity and lifetimes were found to vary with electron dose. At lower doses, they were found to be increasing (red-shift of photoluminescence (PL) peak and intensity) while the intensity decreased at higher electron doses. The observed changes in PL property, XPS and XRD analysis suggest possible epitaxial growth of the CdS shell on the CdTe core. This work demonstrates electron beam induced formation of the CdS layer on the CdTe core, which is a key step towards growth of the water soluble CdTe/CdS core-shell structure for biomedical labelling applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate electronic energy transfer between resonance states of 2 and 2.8 nm CdTe quantum dots in aqueous media using steady-state photoluminescence spectroscopy without using any external linker molecule. With increasing concentration of larger dots, there is subsequent quenching of luminescence in smaller dots accompanied by the enhancement of luminescence in larger dots. Our experimental evidence suggests that there is long-range resonance energy transfer among electronic excitations, specifically from the electronically confined states of the smaller dots to the higher excited states of the larger dots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetically frustrated bosons at half filling in the presence of a competing nearest-neighbor repulsion support a wide supersolid regime on the two-dimensional triangular lattice. We study this model on a two-leg ladder using the finite-size density-matrix renormalization-group method, obtaining a phase diagram which contains three phases: a uniform superfluid (SF), an insulating charge density wave (CDW) crystal, and a bond ordered insulator (BO). We show that the transitions from SF to CDW and SF to BO are continuous in nature, with critical exponents varying continuously along the phase boundaries, while the transition from CDW to BO is found to be first order. The phase diagram is also found to contain an exactly solvable Majumdar Ghosh point, and reentrant SF to CDW phase transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sequence of moments obtained from statistical trials encodes a classical probability distribution. However, it is well known that an incompatible set of moments arises in the quantum scenario, when correlation outcomes associated with measurements on spatially separated entangled states are considered. This feature, viz., the incompatibility of moments with a joint probability distribution, is reflected in the violation of Bell inequalities. Here, we focus on sequential measurements on a single quantum system and investigate if moments and joint probabilities are compatible with each other. By considering sequential measurement of a dichotomic dynamical observable at three different time intervals, we explicitly demonstrate that the moments and the probabilities are inconsistent with each other. Experimental results using a nuclear magnetic resonance system are reported here to corroborate these theoretical observations, viz., the incompatibility of the three-time joint probabilities with those extracted from the moment sequence when sequential measurements on a single-qubit system are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard method of quantum state tomography (QST) relies on the measurement of a set of noncommuting observables, realized in a series of independent experiments. Ancilla-assisted QST (AAQST) proposed by Nieuwenhuizen and co-workers Phys. Rev. Lett. 92, 120402 (2004)] greatly reduces the number of independent measurements by exploiting an ancilla register in a known initial state. In suitable conditions AAQST allows mapping out density matrix of an input register in a single experiment. Here we describe methods for explicit construction of AAQST experiments in multiqubit registers. We also report nuclear magnetic resonance studies on AAQST of (i) a two-qubit input register using a one-qubit ancilla in an isotropic liquid-state system and (ii) a three-qubit input register using a two-qubit ancilla register in a partially oriented system. The experimental results confirm the effectiveness of AAQST in such multiqubit registers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report tuning of photoluminescence enhancement and quenching from closed packed monolayers of cadmium selenide quantum dots doped with gold nanoparticles. Plasmon-mediated control of the emission intensity from the monolayers is achieved by varying the size and packing density of the quantum dots as well as the doping concentration of gold nanoparticles. We observe a unique packing density dependent crossover from enhancement to quenching and vice versa for fixed size of quantum dots and doping concentration of gold nanoparticles. We suggest that this behavior is indicative of a crossover from single particle to collective emission from quantum dots mediated by gold nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Semiconductor Quantum Well (QW) microtubes have been fabricated by strain-induced self assembling technique. Three types of multilayer structures have consisted of GaAs/InxGa1-xAs strained layers containing with various thickness of Monolayers of (GaAs/AlGaAs) QW were grown by Varian Gen II Molecular Beam Epitaxy (MBE) on the GaAs (100) substrate. The shape of the rolled up microtubes provide a clear idea about the formation of three dimensional micro- and nanostructures. Micro-Raman and photoluminescence (PL) studies were performed to the QW microtubes and as compared with their grown area on the GaAs substrate. The results of Raman spectra show the frequency shift of phonon modes measured in tube and compared with the grown area due to residual strain. The PL peaks of the microtube were red-shifted due to the strain effect and transition of bandgap from Type-II to Type-I. (C) 2013 Elsevier B.V. All rights reserved.