391 resultados para QoS WAP Palvelunlaatu
Resumo:
Abstract The proliferation of wireless sensor networks and the variety of envisioned applications associated with them has motivated the development of distributed algorithms for collaborative processing over networked systems. One of the applications that has attracted the attention of the researchers is that of target localization where the nodes of the network try to estimate the position of an unknown target that lies within its coverage area. Particularly challenging is the problem of estimating the target’s position when we use received signal strength indicator (RSSI) due to the nonlinear relationship between the measured signal and the true position of the target. Many of the existing approaches suffer either from high computational complexity (e.g., particle filters) or lack of accuracy. Further, many of the proposed solutions are centralized which make their application to a sensor network questionable. Depending on the application at hand and, from a practical perspective it could be convenient to find a balance between localization accuracy and complexity. Into this direction we approach the maximum likelihood location estimation problem by solving a suboptimal (and more tractable) problem. One of the main advantages of the proposed scheme is that it allows for a decentralized implementation using distributed processing tools (e.g., consensus and convex optimization) and therefore, it is very suitable to be implemented in real sensor networks. If further accuracy is needed an additional refinement step could be performed around the found solution. Under the assumption of independent noise among the nodes such local search can be done in a fully distributed way using a distributed version of the Gauss-Newton method based on consensus. Regardless of the underlying application or function of the sensor network it is al¬ways necessary to have a mechanism for data reporting. While some approaches use a special kind of nodes (called sink nodes) for data harvesting and forwarding to the outside world, there are however some scenarios where such an approach is impractical or even impossible to deploy. Further, such sink nodes become a bottleneck in terms of traffic flow and power consumption. To overcome these issues instead of using sink nodes for data reporting one could use collaborative beamforming techniques to forward directly the generated data to a base station or gateway to the outside world. In a dis-tributed environment like a sensor network nodes cooperate in order to form a virtual antenna array that can exploit the benefits of multi-antenna communications. In col-laborative beamforming nodes synchronize their phases in order to add constructively at the receiver. Some of the inconveniences associated with collaborative beamforming techniques is that there is no control over the radiation pattern since it is treated as a random quantity. This may cause interference to other coexisting systems and fast bat-tery depletion at the nodes. Since energy-efficiency is a major design issue we consider the development of a distributed collaborative beamforming scheme that maximizes the network lifetime while meeting some quality of service (QoS) requirement at the re¬ceiver side. Using local information about battery status and channel conditions we find distributed algorithms that converge to the optimal centralized beamformer. While in the first part we consider only battery depletion due to communications beamforming, we extend the model to account for more realistic scenarios by the introduction of an additional random energy consumption. It is shown how the new problem generalizes the original one and under which conditions it is easily solvable. By formulating the problem under the energy-efficiency perspective the network’s lifetime is significantly improved. Resumen La proliferación de las redes inalámbricas de sensores junto con la gran variedad de posi¬bles aplicaciones relacionadas, han motivado el desarrollo de herramientas y algoritmos necesarios para el procesado cooperativo en sistemas distribuidos. Una de las aplicaciones que suscitado mayor interés entre la comunidad científica es la de localization, donde el conjunto de nodos de la red intenta estimar la posición de un blanco localizado dentro de su área de cobertura. El problema de la localization es especialmente desafiante cuando se usan niveles de energía de la seal recibida (RSSI por sus siglas en inglés) como medida para la localization. El principal inconveniente reside en el hecho que el nivel de señal recibida no sigue una relación lineal con la posición del blanco. Muchas de las soluciones actuales al problema de localization usando RSSI se basan en complejos esquemas centralizados como filtros de partículas, mientas que en otras se basan en esquemas mucho más simples pero con menor precisión. Además, en muchos casos las estrategias son centralizadas lo que resulta poco prácticos para su implementación en redes de sensores. Desde un punto de vista práctico y de implementation, es conveniente, para ciertos escenarios y aplicaciones, el desarrollo de alternativas que ofrezcan un compromiso entre complejidad y precisión. En esta línea, en lugar de abordar directamente el problema de la estimación de la posición del blanco bajo el criterio de máxima verosimilitud, proponemos usar una formulación subóptima del problema más manejable analíticamente y que ofrece la ventaja de permitir en¬contrar la solución al problema de localization de una forma totalmente distribuida, convirtiéndola así en una solución atractiva dentro del contexto de redes inalámbricas de sensores. Para ello, se usan herramientas de procesado distribuido como los algorit¬mos de consenso y de optimización convexa en sistemas distribuidos. Para aplicaciones donde se requiera de un mayor grado de precisión se propone una estrategia que con¬siste en la optimización local de la función de verosimilitud entorno a la estimación inicialmente obtenida. Esta optimización se puede realizar de forma descentralizada usando una versión basada en consenso del método de Gauss-Newton siempre y cuando asumamos independencia de los ruidos de medida en los diferentes nodos. Independientemente de la aplicación subyacente de la red de sensores, es necesario tener un mecanismo que permita recopilar los datos provenientes de la red de sensores. Una forma de hacerlo es mediante el uso de uno o varios nodos especiales, llamados nodos “sumidero”, (sink en inglés) que actúen como centros recolectores de información y que estarán equipados con hardware adicional que les permita la interacción con el exterior de la red. La principal desventaja de esta estrategia es que dichos nodos se convierten en cuellos de botella en cuanto a tráfico y capacidad de cálculo. Como alter¬nativa se pueden usar técnicas cooperativas de conformación de haz (beamforming en inglés) de manera que el conjunto de la red puede verse como un único sistema virtual de múltiples antenas y, por tanto, que exploten los beneficios que ofrecen las comu¬nicaciones con múltiples antenas. Para ello, los distintos nodos de la red sincronizan sus transmisiones de manera que se produce una interferencia constructiva en el recep¬tor. No obstante, las actuales técnicas se basan en resultados promedios y asintóticos, cuando el número de nodos es muy grande. Para una configuración específica se pierde el control sobre el diagrama de radiación causando posibles interferencias sobre sis¬temas coexistentes o gastando más potencia de la requerida. La eficiencia energética es una cuestión capital en las redes inalámbricas de sensores ya que los nodos están equipados con baterías. Es por tanto muy importante preservar la batería evitando cambios innecesarios y el consecuente aumento de costes. Bajo estas consideraciones, se propone un esquema de conformación de haz que maximice el tiempo de vida útil de la red, entendiendo como tal el máximo tiempo que la red puede estar operativa garantizando unos requisitos de calidad de servicio (QoS por sus siglas en inglés) que permitan una decodificación fiable de la señal recibida en la estación base. Se proponen además algoritmos distribuidos que convergen a la solución centralizada. Inicialmente se considera que la única causa de consumo energético se debe a las comunicaciones con la estación base. Este modelo de consumo energético es modificado para tener en cuenta otras formas de consumo de energía derivadas de procesos inherentes al funcionamiento de la red como la adquisición y procesado de datos, las comunicaciones locales entre nodos, etc. Dicho consumo adicional de energía se modela como una variable aleatoria en cada nodo. Se cambia por tanto, a un escenario probabilístico que generaliza el caso determinista y se proporcionan condiciones bajo las cuales el problema se puede resolver de forma eficiente. Se demuestra que el tiempo de vida de la red mejora de forma significativa usando el criterio propuesto de eficiencia energética.
Resumo:
Several activities in service oriented computing, such as automatic composition, monitoring, and adaptation, can benefit from knowing properties of a given service composition before executing them. Among these properties we will focus on those related to execution cost and resource usage, in a wide sense, as they can be linked to QoS characteristics. In order to attain more accuracy, we formulate execution costs / resource usage as functions on input data (or appropriate abstractions thereof) and show how these functions can be used to make better, more informed decisions when performing composition, adaptation, and proactive monitoring. We present an approach to, on one hand, synthesizing these functions in an automatic fashion from the definition of the different orchestrations taking part in a system and, on the other hand, to effectively using them to reduce the overall costs of non-trivial service-based systems featuring sensitivity to data and possibility of failure. We validate our approach by means of simulations of scenarios needing runtime selection of services and adaptation due to service failure. A number of rebinding strategies, including the use of cost functions, are compared.
Resumo:
Service compositions put together loosely-coupled component services to perform more complex, higher level, or cross-organizational tasks in a platform-independent manner. Quality-of-Service (QoS) properties, such as execution time, availability, or cost, are critical for their usability, and permissible boundaries for their values are defined in Service Level Agreements (SLAs). We propose a method whereby constraints that model SLA conformance and violation are derived at any given point of the execution of a service composition. These constraints are generated using the structure of the composition and properties of the component services, which can be either known or empirically measured. Violation of these constraints means that the corresponding scenario is unfeasible, while satisfaction gives values for the constrained variables (start / end times for activities, or number of loop iterations) which make the scenario possible. These results can be used to perform optimized service matching or trigger preventive adaptation or healing.
Resumo:
Data grid services have been used to deal with the increasing needs of applications in terms of data volume and throughput. The large scale, heterogeneity and dynamism of grid environments often make management and tuning of these data services very complex. Furthermore, current high-performance I/O approaches are characterized by their high complexity and specific features that usually require specialized administrator skills. Autonomic computing can help manage this complexity. The present paper describes an autonomic subsystem intended to provide self-management features aimed at efficiently reducing the I/O problem in a grid environment, thereby enhancing the quality of service (QoS) of data access and storage services in the grid. Our proposal takes into account that data produced in an I/O system is not usually immediately required. Therefore, performance improvements are related not only to current but also to any future I/O access, as the actual data access usually occurs later on. Nevertheless, the exact time of the next I/O operations is unknown. Thus, our approach proposes a long-term prediction designed to forecast the future workload of grid components. This enables the autonomic subsystem to determine the optimal data placement to improve both current and future I/O operations.
Resumo:
Over the last decade, Grid computing paved the way for a new level of large scale distributed systems. This infrastructure made it possible to securely and reliably take advantage of widely separated computational resources that are part of several different organizations. Resources can be incorporated to the Grid, building a theoretical virtual supercomputer. In time, cloud computing emerged as a new type of large scale distributed system, inheriting and expanding the expertise and knowledge that have been obtained so far. Some of the main characteristics of Grids naturally evolved into clouds, others were modified and adapted and others were simply discarded or postponed. Regardless of these technical specifics, both Grids and clouds together can be considered as one of the most important advances in large scale distributed computing of the past ten years; however, this step in distributed computing has came along with a completely new level of complexity. Grid and cloud management mechanisms play a key role, and correct analysis and understanding of the system behavior are needed. Large scale distributed systems must be able to self-manage, incorporating autonomic features capable of controlling and optimizing all resources and services. Traditional distributed computing management mechanisms analyze each resource separately and adjust specific parameters of each one of them. When trying to adapt the same procedures to Grid and cloud computing, the vast complexity of these systems can make this task extremely complicated. But large scale distributed systems complexity could only be a matter of perspective. It could be possible to understand the Grid or cloud behavior as a single entity, instead of a set of resources. This abstraction could provide a different understanding of the system, describing large scale behavior and global events that probably would not be detected analyzing each resource separately. In this work we define a theoretical framework that combines both ideas, multiple resources and single entity, to develop large scale distributed systems management techniques aimed at system performance optimization, increased dependability and Quality of Service (QoS). The resulting synergy could be the key 350 J. Montes et al. to address the most important difficulties of Grid and cloud management.
Resumo:
Energy efficiency is a major design issue in the context of Wireless Sensor Networks (WSN). If data is to be sent to a far-away base station, collaborative beamforming by the sensors may help to dis- tribute the load among the nodes and reduce fast battery depletion. However, collaborative beamforming techniques are far from opti- mality and in many cases may be wasting more power than required. In this contribution we consider the issue of energy efficiency in beamforming applications. Using a convex optimization framework, we propose the design of a virtual beamformer that maximizes the network's lifetime while satisfying a pre-specified Quality of Service (QoS) requirement. A distributed consensus-based algorithm for the computation of the optimal beamformer is also provided
Resumo:
Knowledge about the quality characteristics (QoS) of service com- positions is crucial for determining their usability and economic value. Ser- vice quality is usually regulated using Service Level Agreements (SLA). While end-to-end SLAs are well suited for request-reply interactions, more complex, decentralized, multiparticipant compositions (service choreographies) typ- ically involve multiple message exchanges between stateful parties and the corresponding SLAs thus encompass several cooperating parties with interde- pendent QoS. The usual approaches to determining QoS ranges structurally (which are by construction easily composable) are not applicable in this sce- nario. Additionally, the intervening SLAs may depend on the exchanged data. We present an approach to data-aware QoS assurance in choreographies through the automatic derivation of composable QoS models from partici- pant descriptions. Such models are based on a message typing system with size constraints and are derived using abstract interpretation. The models ob- tained have multiple uses including run-time prediction, adaptive participant selection, or design-time compliance checking. We also present an experimen- tal evaluation and discuss the benefits of the proposed approach.
Resumo:
Digital services and communications in vehicular scenarios provide the essential assets to improve road transport in several ways like reducing accidents, improving traffic efficiency and optimizing the transport of goods and people. Vehicular communications typically rely on VANET (Vehicular Ad hoc Networks). In these networks vehicles communicate with each other without the need of infrastructure. VANET are mainly oriented to disseminate information to the vehicles in certain geographic area for time critical services like safety warnings but present very challenging requirements that have not been successfully fulfilled nowadays. Some of these challenges are; channel saturation due to simultaneous radio access of many vehicles, routing protocols in topologies that vary rapidly, minimum quality of service assurance and security mechanisms to efficiently detect and neutralize malicious attacks. Vehicular services can be classified in four important groups: Safety, Efficiency, Sustainability and Infotainment. The benefits of these services for the transport sector are clear but many technological and business challenges need to be faced before a real mass market deployment. Service delivery platforms are not prepared for fulfilling the needs of this complex environment with restrictive requirements due to the criticism of some services To overcome this situation, we propose a solution called VISIONS “Vehicular communication Improvement: Solution based on IMS Operational Nodes and Services”. VISIONS leverages on IMS subsystem and NGN enablers, and follows the CALM reference Architecture standardized by ISO. It also avoids the use of Road Side Units (RSUs), reducing complexity and high costs in terms of deployment and maintenance. We demonstrate the benefits in the following areas: 1. VANET networks efficiency. VISIONS provide a mechanism for the vehicles to access valuable information from IMS and its capabilities through a cellular channel. This efficiency improvement will occur in two relevant areas: a. Routing mechanisms. These protocols are responsible of carrying information from a vehicle to another (or a group of vehicles) using multihop mechanisms. We do not propose a new algorithm but the use of VANET topology information provided through our solution to enrich the performance of these protocols. b. Security. Many aspects of security (privacy, key, authentication, access control, revocation mechanisms, etc) are not resolved in vehicular communications. Our solution efficiently disseminates revocation information to neutralize malicious nodes in the VANET. 2. Service delivery platform. It is based on extended enablers, reference architectures, standard protocols and open APIs. By following this approach, we reduce costs and resources for service development, deployment and maintenance. To quantify these benefits in VANET networks, we provide an analytical model of the system and simulate our solution in realistic scenarios. The simulations results demonstrate how VISIONS improves the performance of relevant routing protocols and is more efficient neutralizing security attacks than the widely proposed solutions based on RSUs. Finally, we design an innovative Social Network service based in our platform, explaining how VISIONS facilitate the deployment and usage of complex capabilities. RESUMEN Los servicios digitales y comunicaciones en entornos vehiculares proporcionan herramientas esenciales para mejorar el transporte por carretera; reduciendo el número de accidentes, mejorando la eficiencia del tráfico y optimizando el transporte de mercancías y personas. Las comunicaciones vehiculares generalmente están basadas en redes VANET (Vehicular Ad hoc Networks). En dichas redes, los vehículos se comunican entre sí sin necesidad de infraestructura. Las redes VANET están principalmente orientadas a difundir información (por ejemplo advertencias de seguridad) a los vehículos en determinadas zonas geográficas, pero presentan unos requisitos muy exigentes que no se han resuelto con éxito hasta la fecha. Algunos de estos retos son; saturación del canal de acceso de radio debido al acceso simultáneo de múltiples vehículos, la eficiencia de protocolos de encaminamiento en topologías que varían rápidamente, la calidad de servicio (QoS) y los mecanismos de seguridad para detectar y neutralizar los ataques maliciosos de manera eficiente. Los servicios vehiculares pueden clasificarse en cuatro grupos: Seguridad, Eficiencia del tráfico, Sostenibilidad, e Infotainment (información y entretenimiento). Los beneficios de estos servicios para el sector son claros, pero es necesario resolver muchos desafíos tecnológicos y de negocio antes de una implementación real. Las actuales plataformas de despliegue de servicios no están preparadas para satisfacer las necesidades de este complejo entorno con requisitos muy restrictivos debido a la criticidad de algunas aplicaciones. Con el objetivo de mejorar esta situación, proponemos una solución llamada VISIONS “Vehicular communication Improvement: Solution based on IMS Operational Nodes and Services”. VISIONS se basa en el subsistema IMS, las capacidades NGN y es compatible con la arquitectura de referencia CALM estandarizado por ISO para sistemas de transporte. También evita el uso de elementos en las carreteras, conocidos como Road Side Units (RSU), reduciendo la complejidad y los altos costes de despliegue y mantenimiento. A lo largo de la tesis, demostramos los beneficios en las siguientes áreas: 1. Eficiencia en redes VANET. VISIONS proporciona un mecanismo para que los vehículos accedan a información valiosa proporcionada por IMS y sus capacidades a través de un canal de celular. Dicho mecanismo contribuye a la mejora de dos áreas importantes: a. Mecanismos de encaminamiento. Estos protocolos son responsables de llevar información de un vehículo a otro (o a un grupo de vehículos) utilizando múltiples saltos. No proponemos un nuevo algoritmo de encaminamiento, sino el uso de información topológica de la red VANET a través de nuestra solución para enriquecer el funcionamiento de los protocolos más relevantes. b. Seguridad. Muchos aspectos de la seguridad (privacidad, gestión de claves, autenticación, control de acceso, mecanismos de revocación, etc) no están resueltos en las comunicaciones vehiculares. Nuestra solución difunde de manera eficiente la información de revocación para neutralizar los nodos maliciosos en la red. 2. Plataforma de despliegue de servicios. Está basada en capacidades NGN, arquitecturas de referencia, protocolos estándar y APIs abiertos. Siguiendo este enfoque, reducimos costes y optimizamos procesos para el desarrollo, despliegue y mantenimiento de servicios vehiculares. Para cuantificar estos beneficios en las redes VANET, ofrecemos un modelo de analítico del sistema y simulamos nuestra solución en escenarios realistas. Los resultados de las simulaciones muestran cómo VISIONS mejora el rendimiento de los protocolos de encaminamiento relevantes y neutraliza los ataques a la seguridad de forma más eficientes que las soluciones basadas en RSU. Por último, diseñamos un innovador servicio de red social basado en nuestra plataforma, explicando cómo VISIONS facilita el despliegue y el uso de las capacidades NGN.
Resumo:
El mundo de las telecomunicaciones evoluciona a gran velocidad, acorde con las necesidades de los usuarios. El crecimiento del número de servicios a través de las conexiones que actualmente utilizamos para conectarnos a Internet (Ej. IPTV) con elevados requerimientos de ancho de banda, que junto a los servicios de nuevo nacimiento (ej. OTT), contribuyen tanto al aumento de la necesidad de mayores velocidades de conexión de los usuarios como a la implantación de nuevos modelos de calidad de servicio. Las redes de datos de banda ancha (fija y móvil) actuales deben, por lo tanto, experimentar una profunda transformación para conseguir solventar de una forma eficiente los problemas y las necesidades de tráfico, pudiendo así absorber el progresivo incremento del ancho de banda, dejando las puertas abiertas a futuras mejoras. Y para ello las operadoras se nutrirán con la valiosa información de tráfico y usuario que les lleven a tomar las mejores decisiones de cara a que las transformaciones llevadas a cabo cubran exactamente lo que el usuario demanda de la forma más eficiente posible. Con estas premisas, surgieron las ideas que se plasmaron como objetivos del PFC : La idea de narrar el despliegue de la banda ancha en España desde sus orígenes hasta la actualidad, enfocando su crecimiento desde un punto de vista sociotecnológico. Dando continuidad al punto anterior, se persiguió la idea de conocer las herramientas sociales y tecnológicas a raíz de las cuales se pueda realizar una previsión del tráfico en las redes de las operadoras en un futuro cercano. La pretensión de mostrar las características de los usuarios de banda ancha y del tráfico de datos que generan, que son de carácter crítico para las operadoras en la elaboración de forma adecuada de la planificación de sus redes. La intención de revelar los procedimientos de las operadoras para que, una vez conocidas las características de sus usuarios, se puedan cumplir los requisitos demandados por los mismos: QoS y los indicadores clave de rendimiento (KPIs) Por otro lado, el nivel de detalle dado pretende adecuarse a un público que no tenga profundos conocimientos sobre la materia, y salvo partes bastante concretas, se puede catalogar este trabajo como de abierto al público en general. ABSTRACT. The world of telecommunications is evolving at high speed, according to the needs of users. The growing of services number through the connections that currently have been used to connect to the Internet (eg IPTV ) with high bandwidth requirements, which together with the new birth services (eg OTT ) contribute both to increased the need for higher connection speeds users and the implementation of new models of service quality. Data networks broadband (fixed and mobile ) today must , therefore, undergo a deep transformation to achieve an efficient solving problems and traffic needs, thus being able to absorb the gradual increase of bandwidth, leaving the door open to future improvements. And for that the operators will be nurtured with valuable information and user traffic that lead them to make better decisions in the face of the transformations carried out exactly meet the user demand for the most efficient possible way. With these assumptions, the ideas that emerged were expressed as PFC objectives : The idea of narrating the broadband deployment in Spain from its origins to the present, focusing its growth from a socio-technological approach. Continuing the previous point, it pursued the idea of knowing the social tools and technology as a result of which it can perform a traffic forecast operators networks in the near future. The attempt to show the characteristics of broadband users and data traffic they generate, which are mission critical for operators in developing adequately planning their networks. The intention to disclose procedures for operators, once known the characteristics of their users, it can meet the requirements demanded by them: QoS and key performance indicators (KPI). On the other hand, the level of detail given suit seeks an audience that does not have deep knowledge on the subject, unless quite specific parts, this work can be classified as open to the general public.
Resumo:
La computación basada en servicios (Service-Oriented Computing, SOC) se estableció como un paradigma ampliamente aceptado para el desarollo de sistemas de software flexibles, distribuidos y adaptables, donde las composiciones de los servicios realizan las tareas más complejas o de nivel más alto, frecuentemente tareas inter-organizativas usando los servicios atómicos u otras composiciones de servicios. En tales sistemas, las propriedades de la calidad de servicio (Quality of Service, QoS), como la rapídez de procesamiento, coste, disponibilidad o seguridad, son críticas para la usabilidad de los servicios o sus composiciones en cualquier aplicación concreta. El análisis de estas propriedades se puede realizarse de una forma más precisa y rica en información si se utilizan las técnicas de análisis de programas, como el análisis de complejidad o de compartición de datos, que son capables de analizar simultáneamente tanto las estructuras de control como las de datos, dependencias y operaciones en una composición. El análisis de coste computacional para la composicion de servicios puede ayudar a una monitorización predictiva así como a una adaptación proactiva a través de una inferencia automática de coste computacional, usando los limites altos y bajos como funciones del valor o del tamaño de los mensajes de entrada. Tales funciones de coste se pueden usar para adaptación en la forma de selección de los candidatos entre los servicios que minimizan el coste total de la composición, basado en los datos reales que se pasan al servicio. Las funciones de coste también pueden ser combinadas con los parámetros extraídos empíricamente desde la infraestructura, para producir las funciones de los límites de QoS sobre los datos de entrada, cuales se pueden usar para previsar, en el momento de invocación, las violaciones de los compromisos al nivel de servicios (Service Level Agreements, SLA) potenciales or inminentes. En las composiciones críticas, una previsión continua de QoS bastante eficaz y precisa se puede basar en el modelado con restricciones de QoS desde la estructura de la composition, datos empiricos en tiempo de ejecución y (cuando estén disponibles) los resultados del análisis de complejidad. Este enfoque se puede aplicar a las orquestaciones de servicios con un control centralizado del flujo, así como a las coreografías con participantes multiples, siguiendo unas interacciones complejas que modifican su estado. El análisis del compartición de datos puede servir de apoyo para acciones de adaptación, como la paralelización, fragmentación y selección de los componentes, las cuales son basadas en dependencias funcionales y en el contenido de información en los mensajes, datos internos y las actividades de la composición, cuando se usan construcciones de control complejas, como bucles, bifurcaciones y flujos anidados. Tanto las dependencias funcionales como el contenido de información (descrito a través de algunos atributos definidos por el usuario) se pueden expresar usando una representación basada en la lógica de primer orden (claúsulas de Horn), y los resultados del análisis se pueden interpretar como modelos conceptuales basados en retículos. ABSTRACT Service-Oriented Computing (SOC) is a widely accepted paradigm for development of flexible, distributed and adaptable software systems, in which service compositions perform more complex, higher-level, often cross-organizational tasks using atomic services or other service compositions. In such systems, Quality of Service (QoS) properties, such as the performance, cost, availability or security, are critical for the usability of services and their compositions in concrete applications. Analysis of these properties can become more precise and richer in information, if it employs program analysis techniques, such as the complexity and sharing analyses, which are able to simultaneously take into account both the control and the data structures, dependencies, and operations in a composition. Computation cost analysis for service composition can support predictive monitoring and proactive adaptation by automatically inferring computation cost using the upper and lower bound functions of value or size of input messages. These cost functions can be used for adaptation by selecting service candidates that minimize total cost of the composition, based on the actual data that is passed to them. The cost functions can also be combined with the empirically collected infrastructural parameters to produce QoS bounds functions of input data that can be used to predict potential or imminent Service Level Agreement (SLA) violations at the moment of invocation. In mission-critical applications, an effective and accurate continuous QoS prediction, based on continuations, can be achieved by constraint modeling of composition QoS based on its structure, known data at runtime, and (when available) the results of complexity analysis. This approach can be applied to service orchestrations with centralized flow control, and choreographies with multiple participants with complex stateful interactions. Sharing analysis can support adaptation actions, such as parallelization, fragmentation, and component selection, which are based on functional dependencies and information content of the composition messages, internal data, and activities, in presence of complex control constructs, such as loops, branches, and sub-workflows. Both the functional dependencies and the information content (described using user-defined attributes) can be expressed using a first-order logic (Horn clause) representation, and the analysis results can be interpreted as a lattice-based conceptual models.
Resumo:
Today P2P faces two important challenges: design of mechanisms to encourage users' collaboration in multimedia live streaming services; design of reliable algorithms with QoS provision, to encourage the multimedia providers employ the P2P topology in commercial live streaming systems. We believe that these two challenges are tightly-related and there is much to be done with respect. This paper analyzes the effect of user behavior in a multi-tree P2P overlay and describes a business model based on monetary discount as incentive in a P2P-Cloud multimedia streaming system. We believe a discount model can boost up users' cooperation and loyalty and enhance the overall system integrity and performance. Moreover the model bounds the constraints for a provider's revenue and cost if the P2P system is leveraged on a cloud infrastructure. Our case study shows that a streaming system provider can establish or adapt his business model by applying the described bounds to achieve a good discount-revenue trade-off and promote the system to the users.
Resumo:
Providing QoS in the context of Ad Hoc networks includes a very wide field of application from the perspective of every level of the architecture in the network.In order for simulation studies to be useful, it is very important that the simulation results match as closely as possible with the test bed results. In this Paper, we study the throughput performance (parameter QoS) in Mobile Ad Hoc Networks (MANETs) and compares emulated test bed results with simulation results from NS2 (Network Simulator). The performance of the Mobile Ad Hoc Networks is very sensitive to the number of users and the offered load. When the number of users/offered load is high then the collisions increase resulting in larger wastage of the medium and lowering overall throughput. The aim of this research is to compare the throughput of Mobile Ad Hoc Networks using three different scenarios: 97, 100 and 120 users (nodes) using simulator NS2. By analyzing the graphs in MANETs, it is concluded When the number of users o nodes is increased beyond the certain limit, throughput decreases.
Resumo:
Today P2P faces two important challenges: design of mechanisms to encourage users’ collaboration in multimedia live streaming services; design of reliable algorithms with QoS provision, to encourage multimedia providers employ the P2P topology in commercial streaming services. We believe that these two challenges are tightly-related and there is much to be done with respect. This paper proposes a novel monetary incentive for P2P multimedia streaming. The incentive model classifies the users in groups according to the perceived video quality. We apply the model to a streaming system’s billing model in order to evaluate its feasibility and visualize its quantitative effect on the users’ motivation and the provider’s profit. We conclude that monetary incentive can boost up users’ cooperation, loyalty and enhance the overall system integrity and performance. Moreover the model defines the constraints for the provider’s cost and profit when the system is leveraged on the cloud. Considering those constraints, a multimedia content provider can adapt the billing model of his streaming service and achieve desirable discount-profit trade-off. This will moreover contribute to better promotion of the service, across the users on the Internet.
Resumo:
With the advent of cloud computing model, distributed caches have become the cornerstone for building scalable applications. Popular systems like Facebook [1] or Twitter use Memcached [5], a highly scalable distributed object cache, to speed up applications by avoiding database accesses. Distributed object caches assign objects to cache instances based on a hashing function, and objects are not moved from a cache instance to another unless more instances are added to the cache and objects are redistributed. This may lead to situations where some cache instances are overloaded when some of the objects they store are frequently accessed, while other cache instances are less frequently used. In this paper we propose a multi-resource load balancing algorithm for distributed cache systems. The algorithm aims at balancing both CPU and Memory resources among cache instances by redistributing stored data. Considering the possible conflict of balancing multiple resources at the same time, we give CPU and Memory resources weighted priorities based on the runtime load distributions. A scarcer resource is given a higher weight than a less scarce resource when load balancing. The system imbalance degree is evaluated based on monitoring information, and the utility load of a node, a unit for resource consumption. Besides, since continuous rebalance of the system may affect the QoS of applications utilizing the cache system, our data selection policy ensures that each data migration minimizes the system imbalance degree and hence, the total reconfiguration cost can be minimized. An extensive simulation is conducted to compare our policy with other policies. Our policy shows a significant improvement in time efficiency and decrease in reconfiguration cost.
Resumo:
Quality of service (QoS) can be a critical element for achieving the business goals of a service provider, for the acceptance of a service by the user, or for guaranteeing service characteristics in a composition of services, where a service is defined as either a software or a software-support (i.e., infrastructural) service which is available on any type of network or electronic channel. The goal of this article is to compare the approaches to QoS description in the literature, where several models and metamodels are included. consider a large spectrum of models and metamodels to describe service quality, ranging from ontological approaches to define quality measures, metrics, and dimensions, to metamodels enabling the specification of quality-based service requirements and capabilities as well as of SLAs (Service-Level Agreements) and SLA templates for service provisioning. Our survey is performed by inspecting the characteristics of the available approaches to reveal which are the consolidated ones and which are the ones specific to given aspects and to analyze where the need for further research and investigation lies. The approaches here illustrated have been selected based on a systematic review of conference proceedings and journals spanning various research areas in computer science and engineering, including: distributed, information, and telecommunication systems, networks and security, and service-oriented and grid computing.