900 resultados para Pyrolytic and oxidative thermal degradation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wine grape must deal with serious problems due to the unfavorable climatic conditions resulted from global warming. High temperatures result in oxidative damages to grape vines. The excessive elevated temperatures are critical for grapevine productivity and survival and contribute to degradation of grape and wine quality and yield. Elevated temperature can negatively affect anthocyanin accumulation in red grape. Particularly, cv. Sangiovese was identified to be very sensitive to such condition. The quantitative real-time PCR analysis showed that flavonoid biosynthetic genes were slightly repressed by high temperature. Also, the heat stress repressed the expression of the transcription factor “VvMYBA1” that activates the expression of UFGT. Moreover, high temperatures had repressing effects on the activity of the flavonoids biosynthetic enzymes “PAL” and “UFGT”.Anthocyanin accumulation in berry skin is due to the balance between its synthesis and oxidation. In grape cv. Sangiovese, the gene transcription and activity of peroxidases enzyme was elevated by heat stress as a defensive mechanism of ROS-scavenging. Among many isoforms of peroxidases genes, one gene (POD 1) was induced in Sangiovese under thermal stress condition. This gene was isolated and evaluated via the technique of genes transformation from grape to Petunia. Reduction in anthocyanins concentration and higher enzymatic activity of peroxidase was observed in POD 1 transformed Petunia after heat shock compared to untrasformed control. Moreover, in wine producing regions, it is inevitable for the grape growers to adopt some adaptive strategies to alleviate grape damages to abiotic stresses. Therefore, in this thesis, the technique of post veraison trimming was done to improve the coupling of phenolic and sugar ripening in Vitis vinifera L. cultivar Sangiovese. Trimming after veraison showed to be executable to slow down the rate of sugar accumulation in grape (to decrease the alcohol potential in wines) without evolution of the main berry flavonoids compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation submitted to PSE Seminar, Chemical Engineering Department, Center for Advanced Process Design-making (CAPD), Carnegie Mellon University, Pittsburgh (USA), October 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic investigation of the thermal decomposition of viscoelastic memory foam (VMF) was performed using thermogravimetric analysis (TGA) to obtain the kinetic parameters, and thermogravimetric analysis coupled to Fourier Transformed Infrared Spectrometry (TGA-FTIR) and thermogravimetric analysis coupled to Mass Spectrometry (TGA-MS) to obtain detailed information of evolved products on pyrolysis and oxidative degradations. Two consecutive nth-order reactions were employed to correlate the experimental data from dynamic and isothermal runs performed at three different heating rates (5, 10 and 20 K/min) under an inert atmosphere. On the other hand, for the kinetic study of the oxidative decomposition, the data from combustion (synthetic air) and poor oxygen combustion (N2:O2 = 9:1) runs, at three heating rates and under dynamic and isothermal conditions, were correlated simultaneously. A kinetic model consisting of three consecutive reactions presented a really good correlation in all runs. TGA-FTIR analysis showed that the main gases released during the pyrolysis of VMF were determined as ether and aliphatic hydrocarbons, whereas in combustion apart from the previous gases, aldehydes, amines and CO2 have also been detected as the main gases. These results were confirmed by the TGA-MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of ester plasticizers and copolymers on the mechanical properties of the natural biodegradable polymers, poly(3-hydroxybutyrate) [PHB] and poly(lactic acid) [PLA] have been studied after subjecting to melt processing conditions. Ester plasticizers were synthesized from citric, tartaric and maleic acids using various alcohols. A variety of PLA copolymers have also been prepared from poly(ethylene glycol) derivatives using stannous octanoate catalysed ring opening polymerisations of DL-lactide. A novel PLA star copolymer was also prepared from an ethoxylated pentaerythritol. The structures of these copolymers were determined by NMR spectroscopy. The plasticizing effect of the synthesised additives at various concentrations was determined. While certain additives were capable of improving the mechanical properties of PLA, none were effective in PHB. Moreover, it was found that certain combinations of additives exhibited synergistic effects. Possible mechanisms are discussed. Biotic and abiotic degradation studies showed that the plasticizers (esters and copolymers) did not inhibit the biodegradability of PHB or PLA in compost at 60°C. Simple toxicity tests carried out on compost extract and its ability to support the growth of cress seeds was established. PLA was found to be susceptible to limited thermal degradation under melt processing conditions. Conventional phenolic antioxidants showed no significant effect on this process, suggesting that degradation was not predominantly a free radical process. PLA also underwent photo-oxidative degradation with UV light and the process could be accelerated in the presence of a photoactivator such as iron (III) diisononyl dithiocarbamate. The mechanisms for the above processes are discussed. Finally, selected compounds were prepared on a pilot plant scale. Extruded and blown films were prepared containing these additives with conventional polymer processing equipment. The mechanical properties were similar to those obtained with laboratory produced compression moulded films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallocene ethylene-1-octene copolymers having different densities and comonomer content ranging from 11 to 36 wt% (m-LLDPE), and a Ziegler copolymer (z-LLDPE) containing the same level of short-chain branching (SCB) corresponding to one of the m-LLDPE polymers, were subjected to extrusion. The effects of temperature (210-285 °C) and multi-pass extrusions (up to five passes) on the rheological and structural characteristics of these polymers were investigated using melt index and capillary rheometry, along with spectroscopic characterisation of the evolution of various products by FTIR, C-NMR and colour measurements. The aim is to develop a better understanding of the effects of processing variables on the structure and thermal degradation of these polymers. Results from rheology show that both extrusion temperature and the amount of comonomer have a significant influence on the polymer melt thermo-oxidative behaviour. At low to intermediate processing temperatures, all m-LLDPE polymers exhibited similar behaviour with crosslinking reactions dominating their thermal oxidation. By contrast, at higher processing temperatures, the behaviour of the metallocene polymers changed depending on the level of comonomer content: higher SCB gave rise to predominantly chain scission reactions whereas polymers with lower level of SCB continued to be dominated by crosslinking. This temperature dependence was attributed to changes in the different evolution of carbonyl and unsaturated compounds including vinyl, vinylidene and trans-vinylene. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates fast pyrolysis bio-oils produced from alkali-metal-impregnated biomass (beech wood). The impregnation aim is to study the catalytic cracking of the pyrolysis vapors as a result of potassium or phosphorus. It is recognized that potassium and phosphorus in biomass can have a major impact on the thermal conversion processes. When biomass is pyrolyzed in the presence of alkali metal cations, catalytic cracking of the pyrolysis liquids occurs in the vapor phase, reducing the organic liquids produced and increasing yields of water, char, and gas, resulting in a bio-oil that has a lower calorific value and an increased chance of phase separation. Beech wood was impregnated with potassium or phosphorus (K impregnation and P impregnation, respectively) in the range of 0.10-2.00 wt %. Analytical pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was used to examine the pyrolysis products during thermal degradation, and thermogravimetric analysis (TGA) was used to examine the distribution of char and volatiles. Both potassium and phosphorus are seen to catalyze the pyrolytic decomposition of biomass and modify the yields of products. 3-Furaldehyde and levoglucosenone become more dominant products upon P impregnation, pointing to rearrangement and dehydration routes during the pyrolysis process. Potassium has a significant influence on cellulose and hemicellulose decomposition, not just on the formation of levoglucosan but also other species, such as 2(5H)-furanone or hydroxymethyl-cyclopentene derivatives. Fast pyrolysis processing has also been undertaken using a laboratory-scale continuously fed bubbling fluidized-bed reactor with a nominal capacity of 1 kg h-1 at the reaction temperature of 525 °C. An increase in the viscosity of the bio-oil during the stability assessment tests was observed with an increasing percentage of impregnation for both additives. This is because bio-oil undergoes polymerization while placed in storage as a result of the inorganic content. The majority of inorganics are concentrated in the char, but small amounts are entrained in the pyrolysis vapors and, therefore, end up in the bio-oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensification of permafrost disturbances such as active layer detachments (ALDs) and retrogressive thaw slumps (RTS) have been observed across the circumpolar Arctic. These features are indicators of unstable conditions stemming from recent climate warming and permafrost degradation. In order to understand the processes interacting to give rise to these features, a multidisciplinary approach is required; i.e., interactions between geomorphology, hydrology, vegetation and ground thermal conditions. The goal of this research is to detect and map permafrost disturbance, predict landscape controls over disturbance and determine approaches for monitoring disturbance, all with the goal of contributing to the mitigation of permafrost hazards. Permafrost disturbance inventories were created by applying semi-automatic change detection techniques to IKONOS satellite imagery collected at the Cape Bounty Arctic Watershed Observatory (CBAWO). These methods provide a means to estimate the spatial distribution of permafrost disturbances for a given area for use as an input in susceptibility modelling. Permafrost disturbance susceptibility models were then developed using generalized additive and generalized linear models (GAM, GLM) fitted to disturbed and undisturbed locations and relevant GIS-derived predictor variables (slope, potential solar radiation, elevation). These models successfully delineated areas across the landscape that were susceptible to disturbances locally and regionally when transferred to an independent validation location. Permafrost disturbance susceptibility models are a first-order assessment of landscape susceptibility and are promising for designing land management strategies for remote permafrost regions. Additionally, geomorphic patterns associated with higher susceptibility provide important knowledge about processes associated with the initiation of disturbances. Permafrost degradation was analyzed at the CBAWO using differential interferometric synthetic aperture radar (DInSAR). Active-layer dynamics were interpreted using inter-seasonal and intra-seasonal displacement measurements and highlight the importance of hydroclimatic factors on active layer change. Collectively, these research approaches contribute to permafrost monitoring and the assessment of landscape-scale vulnerability in order to develop permafrost disturbance mitigation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the modifications promoted by alkaline hydrolysis and glutaraldehyde (GA) crosslinking on type I collagen found in porcine skin have been studied. Collagen matrices were obtained from the alkaline hydrolysis of porcine skin, with subsequent GA crosslinking in different concentrations and reaction times. The elastin content determination showed that independent of the treatment, elastin was present in the matrices. Results obtained from in vitro trypsin degradation indicated that with the increase of GA concentration and reaction time, the degradation rate decreased. From thermogravimetry and differential scanning calorimetry analysis it can be observed that the collagen in the matrices becomes more resistant to thermal degradation as a consequence of the increasing crosslink degree. Scanning electron microscopy analysis indicated that after the GA crosslinking, collagen fibers become more organized and well-defined. Therefore, the preparations of porcine skin matrices with different degradation rates, which can be used in soft tissue reconstruction, are viable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and fast capillary zone electrophoresis (CZE) method has been developed and validated for quantification of a non-nucleoside reverse transcriptase inhibitor (NNRTI) nevirapine, in pharmaceuticals. The analysis was optimized using 10 mmol L-1 sodium phosphate buffer pH 2.5, +25 kV applied voltage, hydrodynamic injection 0.5 psi for 5 s and direct UV detection at 200 µm. Diazepam (50.0 µg mL-1) was used as internal standard. Under these conditions, nevirapine was analyzed in approximately less than 2.5 min. The analytical curve presented a coefficient of correlation of 0.9994. Limits of detection and quantification were 1.4 µg mL-1 and 4.3 µg mL-1, respectively. Intra- and inter-day precision expressed as relative standard deviations were 1.4% and 1.3%, respectively and the mean recovery was 100.81%. The active pharmaceutical ingredient was subjected to hydrolysis (acid, basic and neutral) and oxidative stress conditions. No interference of degradation products and tablet excipients were observed. This method showed to be rapid, simple, precise, accurate and economical for determination of nevirapine in pharmaceuticals and it is suitable for routine quality control analysis since CE offers benefits in terms of quicker method development and significantly reduced operating costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal behavior of two polymorphic forms of rifampicin was studied by DSC and TG/DTG. The thermoanalytical results clearly showed the differences between the two crystalline forms. Polymorph I was the most thermally stable form, the DSC curve showed no fusion for this species and the thermal decomposition process occurred around 245 ºC. The DSC curve of polymorph II showed two consecutive events, an endothermic event (Tpeak = 193.9 ºC) and one exothermic event (Tpeak = 209.4 ºC), due to a melting process followed by recrystallization, which was attributed to the conversion of form II to form I. Isothermal and non-isothermal thermogravimetric methods were used to determine the kinetic parameters of the thermal decomposition process. For non-isothermal experiments, the activation energy (Ea) was derived from the plot of Log β vs 1/T, yielding values for polymorph form I and II of 154 and 123 kJ mol-1, respectively. In the isothermal experiments, the Ea was obtained from the plot of lnt vs 1/T at a constant conversion level. The mean values found for form I and form II were 137 and 144 kJ mol-1, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, thermal and optical properties of the commercial Q-98 neodymium-doped phosphate glass have been measured at low temperature, from 50 to 300 K. The time-resolved thermal lens spectrometry together with the optical interferometry and the thermal relaxation calorimetry methods were used to investigate the glass athermal characteristics described by the temperature coefficient of the optical path length change, ds/dT. The thermal diffusivity was also determined, and the temperature coefficients of electronic polarizability, linear thermal expansion, and refractive index were calculated and used to explain ds/dT behavior. ds/dT measured via thermal lens method was found to be zero at 225 K. The results provided a complete characterization of the thermo-optical properties of the Q-98 glass, which may be useful for those using this material for diode-pumped solid-state lasers. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3234396]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To evaluate biomarkers of endothelial dysfunction and oxidative stress in glucose intolerance (GI) compared to overt diabetes (DM2). Design and methods: 140 volunteers including 96 with DM2, 32 with GI and 12 controls (C) were Studied. NO metabolites, NO synthase inhibitors. thiols and N-acetyl-beta-glucosaminidase (NAGase) activity were analyzed by chemiluminescence, capillary electrophoresis, ELISA and colorimetric assay, respectively. Results: (center dot)NO metabolites were higher in GI (NOx: P=0.03 S-nitrosothiols: p=0.001) and DM2 (p=0.006; p=0.0006) groups in relation to group C, while nitrotyrosine was higher only in the DM2 group in comparison 10 the other groups. NAGase activity was elevated in GI (p=0.003) and DM2 (p=0.0004) groups in relation to group C, as well as, ADMA (p=0.01: p=0.003) and GSSG (p=0.01 p=0.002). Conclusions: (center dot)NO metabolites. (center dot)NO synthase inhibitors. thiols and NAGase are biomarkers Suitable to indicate endothelial dysfunction and oxidative stress in the early stages of impaired response to insulin. (c) 2008 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.