986 resultados para Proto-oncogene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic analysis, both karyotyping and comparative genomic hybridization, of prostate cancer cell lines and specimens have revealed multiple areas of concordant increases in DNA content. An increase of DNA in specific regions of the genome in cancer is often associated with the amplification of oncogenes. Based on these observations we have hypothesized that oncogenes are involved in the initiation or progression of prostate cancer. An expression cloning approach was utilized to identify candidate oncogenes in prostate cancer. ^ A full-length, unidirectional cDNA expression library was constructed from DU145 prostate cancer cells. The cDNA library was screened using CP12, a rat prostate epithelial cell line. In soft agarose assays, CP12 (parental or vector transfected) do not form colonies. However, upon the introduction of a number of known oncogenes CP12 becomes anchorage independent in soft agarose. Based on this in-vitro phenotypic shift, a DU145 cDNA library was stably transfected into CP12, and selected for anchorage independence. Two hundred fifty nine anchorage independent clones were isolated. Some colonies contained more than one insert, bringing the candidate oncogene pool to approximately 400. Seven inserts were sequenced at random. Using the sequences obtained, GenBank was screened, and matches were found with p53, PARG1, a mitochondrial ATPase, RNF6, and three unknown genes that mapped to Unigene clusters. As the pool of cDNA inserts appeared promising, overexpressed genes were further selected. From 259 clones, 17 clones were overexpressed more than 6-fold in DU145 compared to Normal Prostate. From the 17 clones, 12 cDNA inserts were strongly expressed in DU145 and were isolated for sequencing. ^ Two of the sequences, 1G6 and 3E9, were identical. Expression of 1G6/2G9/3E9 was tested by RT-PCR. 1G6/2G9/3E9 was not expressed in normal prostate, but was expressed in all prostate cancer cell lines tested as well as six prostate cancer samples. When retransfected into CP12, 1G6/2G9/3E9 induced the formation of foci and anchorage independent colonies. Thus, functional and expression data suggest that 1G6/2G9/3E9 may be a prostate cancer oncogene. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite having been identified over thirty years ago and definitively established as having a critical role in driving tumor growth and predicting for resistance to therapy, the KRAS oncogene remains a target in cancer for which there is no effective treatment. KRas is activated b y mutations at a few sites, primarily amino acid substitutions at codon 12 which promote a constitutively active state. I have found that different amino acid substitutions at codon 12 can activate different KRas downstream signaling pathways, determine clonogenic growth potential and determine patient response to molecularly targeted therapies. Computer modeling of the KRas structure shows that different amino acids substituted at the codon 12 position influences how KRas interacts with its effecters. In the absence of a direct inhibitor of mutant KRas several agents have recently entered clinical trials alone and in combination directly targeting two of the common downstream effecter pathways of KRas, namely the Mapk pathway and the Akt pathway. These inhibitors were evaluated for efficacy against different KRAS activating mutations. An isogenic panel of colorectal cells with wild type KRas replaced with KRas G12C, G12D, or G12V at the endogenous loci differed in sensitivity to Mek and Akt inhibition. In contrast, screening was performed in a broad panel of lung cell lines alone and no correlation was seen between types of activating KRAS mutation due to concurrent oncogenic lesions. To find a new method to inhibit KRAS driven tumors, siRNA screens were performed in isogenic lines with and without active KRas. The knockdown of CNKSR1 (CNK1) showed selective growth inhibition in cells with an oncogenic KRAS. The deletion of CNK1 reduces expression of mitotic cell cycle proteins and arrests cells with active KRas in the G1 phase of the cell cycle similar to the deletion of an activated KRas regardless of activating substitution. CNK1 has a PH domain responsible for localizing it to membrane lipids making KRas potentially amenable to inhibition with small molecules. The work has identified a series of small molecules capable of binding to this PH domain and inhibiting CNK1 facilitated KRas signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of my research involved the characterization of the neu gene promoter. I subcloned a 2.2-kb sequence located upstream to the extreme 5$\sp\prime$ end of the neu gene, in front of the bacterial reporter gene, chloramphenicol acetyltransferase (CAT). Transfection of this construct into different cell lines and subsequent CAT assays demonstrated that this 2.2-kb fragment was functional as a promoter. A series of deletion constructs was engineered to study the contribution of different fragments to transcription. Subcloning of individual fragments was followed by a cotransfection competition experiment, which demonstrated the involvement of protein factors interacting with the promoter. A gel retardation assay was also performed to show the physical binding of protein factors to the promoter. The combined results suggested that both positively and negatively acting protein factors are involved in interacting with different regions of the promoter, contributing to the overall transcription activity. My findings provide an insight into the regulation of neu gene expression, which in turn provides the tools to understand the molecular mechanisms of overexpression of the neu gene in some breast cancer and ovarian cancer cell lines.^ In the second part of my research, I discovered that another oncogene, c-myc, was able to reverse the transformed morphology that was induced by the neu oncogene. Utilizing the promoter constructs that I made, I was able to show that the c-myc oncogene has a negative regulatory effect on the expression of the neu oncogene. Further studies suggested that c-myc is able to lower the effective concentration of a positive factor(s) that interact with a 139-bp fragment of the neu gene promoter. These findings may provide a direct evidence of the long suspected role of the c-myc gene in transcriptional regulation. The neu gene may very well be the first identified mammalian target gene that is regulated by the c-myc oncogene. Since c-myc is known to be stimulated by various mitogenic signals and the neu gene is likely to be a growth factor receptor, it is possible that c-myc, when stimulated by the signal transduction pathway of the neu gene, would function as a negative feedback regulator on the neu gene receptor. (Abstract shortened with permission of author.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neu oncogene encodes a growth factor receptor-like protein, p185, with an intrinsic tyrosine kinase activity. A single point mutation, an A to T transversion resulting in an amino acid substitution from valine to glutamic acid, in the transmembrane domain of the rat neu gene was found to be responsible for the transforming and tumorigenic phenotype of the cells that carry it. In contrast, the human proto-neu oncogene is frequently amplified in tumors and cell lines derived from tumors and the human neu gene overexpression/amplification in breast and ovarian cancers is known to correlate with poor patient prognosis. Examples of the human neu gene overexpression in the absence of gene amplification have been observed, which may suggest the significant role of the transcriptional and/or post-transcriptional control of the neu gene in the oncogenic process. However, little is known about the transcriptional mechanisms which regulate the neu gene expression. In this study, three examples are presented to demonstrate the positive and negative control of the neu gene expression.^ First, by using band shift assays and methylation interference analyses, I have identified a specific protein-binding sequence, AAGATAAAACC ($-$466 to $-$456), that binds a specific trans-acting factor termed RVF (for EcoRV factor on the neu promoter). The RVF-binding site is required for maximum transcriptional activity of the rat neu promoter. This same sequence is also found in the corresponding regions of both human and mouse neu promoters. Furthermore, this sequence can enhance the CAT activity driven by a minimum promoter of the thymidine kinase gene in an orientation-independent manner, and thus it behaves as an enhancer. In addition, Southwestern (DNA-protein) blot analysis using the RVF-binding site as a probe points to a 60-kDa polypeptide as a potential candidate for RVF.^ Second, it has been reported that the E3 region of adenovirus 5 induces down-regulation of epidermal growth factor (EGF) receptor through endocytosis. I found that the human neu gene product, p185, (an EGF receptor-related protein) is also down-regulated by adenovirus 5, but via a different mechanism. I demonstrate that the adenovirus E1a gene is responsible for the repression of the human neu gene at the transcriptional level.^ Third, a differential expression of the neu gene has been found in two cell model systems: between the mouse fibroblast Swiss-Webster 3T3 (SW3T3) and its variant NR-6 cells; and between the mouse liver tumor cell line, Hep1-a, and the mouse pancreas tumor cell line, 266-6. Both NR-6 and 266-6 cell lines are not able to express the neu gene product, p185. I demonstrate that, in both cases, the transcriptional repression of the neu gene may account for the lack of the p185 expression in these two cell lines. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential effects of the E1A gene products on the promoter activities of neu were investigated. Transcription of the neu oncogene was found to be strongly repressed by the E1A gene products and this requires that conserved region 2 of the E1A proteins. The target for E1A repression was localized within a 140 base pair (bp) DNA fragment in the upstream region of the neu promoter. To further study if this transcriptional repression of neu by E1A can inhibit the transforming ability of the neu transformed cells, the E1A gene was introduced into the neu oncogene transformed B104-1-1 cells and developed B-E1A cell lines that express E1A proteins. These B-E1A stable transfectants have reduced transforming activity compared to the parental B104-1-1 cell line and we conclude that E1A can suppress the transformed phenotypes of the neu oncogene transformed cells via transcriptional repression of neu.^ To study the effects of E1A on metastasis, we first introduced the mutation-activated rat neu oncogene into 3T3 cells and showed that both the neu oncogene transformed NIH3T3 cells and Swiss Webster 3T3 cells exhibited metastatic properties in vitro and in vivo, while their parental 3T3 cells did not. Additionally, the neu-specific monoclonal antibody 7.16.4, which can down regulate neu-encoded p185 protein, effectively reduced the metastatic properties induced by neu. To investigate if E1A can reduce the metastatic potential of neu-transformed cells, we also compared the metastatic properties of B-E1A cell lines and B104-1-1 cell. B-E1A cell lines showed reduced invasiveness and lung colonization than the parental neu transformed B104-1-1 cells. We conclude that E1A gene products also have inhibitory effect on the metastatic phenotypes of the neu oncogene transformed cells.^ The product of human retinoblastoma (RB) susceptibility gene has been shown to complex with E1A gene products and is speculated to regulate gene expression. We therefore investigated in E1A-RB interaction might be involved in the regulation of neu oncogene expression. We found that the RB gene product can decrease the E1A-mediated repression of neu oncogene and the E1A binding region of the RB protein is required for the derepression function. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neu gene encodes a 185,000-Da membrane glycoprotein that is highly homologous to epidermal growth factor receptor. It is frequently overexpressed or amplified in human breast carcinomas and ovarian cancers, which correlates with a poor prognosis for patients. The importance of neu gene regulation is noted by the fact that many breast cancer cells overexpress the neu gene without proportional gene amplification. The mechanism for that is unclear. My initial finding of neu autoregulation led to a realization that defects in neu autoregulation pathway may contribute to neu overexpression in tumor cells. I have found in the nontransformed NIH 3T3 model system that (i) the neu gene product autorepresses its own promoter activity, (ii) the neu gene promoter contains a novel enhancer, (iii) neu autorepression is mediated through this enhancer by inhibition of the enhancer activity, and (iv) c-myc expression serves as an intermediate step downstream from the membrane bound neu-encoded receptor in this complicated feedback inhibition pathway.^ In addition, a part of my research is studying the neu-encoded receptor molecule. I have generated a construct coding the neu ligand-binding domain and demonstrated that (i) the neu ligand-binding domain is a secretory peptide, (ii) it inhibits the normal neu-associated tyrosine kinase but not activated neu-associated tyrosine kinase. My study provided experimental evidence for the mechanisms of neu gene activation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous study in our lab has shown that the transforming neu oncogene ($neu\sp\*$) was able to initiate signals that lead to repression of the neu promoter activity. Further deletion mapping of the neu promoter identified that the GTG element (GGTGGGGGGG), located between $-$243 and $-$234 relative to the translation initiation codon, mediates such a repression effect. I have characterized the four major protein complexes that interact with this GTG element. In situ UV-crosslinking indicated that each complex contains proteins of different molecular weights. The slowest migrating complex (S) contain Sp1 or Sp1-related proteins, as indicated by the data that both have similar molecular weights, similar properties in two affinity chromatographies, and both are antigenically related in gel shift analysis. Methylation protection and interference experiments demonstrated these complexes bind to overlapping regions of the GTG element. Mutations within the GTG element that either abrogate or enhance complex S binding conferred on the neu promoter with lower activity, indicating that positive factors other than Sp1 family proteins also contribute to neu promoter activity. A mutated version (mutant 4) of the GTG element, which binds mainly the fastest migrating complex that contains a very small protein of 26-kDa, can repress transcription when fused to a heterologous promoter. Further deletion and mutation studies suggested that this GTG mutant and its binding protein(s) may cooperate with some DNA element within a heterologous promoter to lock the basal transcription machinery; such a repressor might also repress neu transcription by interfering with the DNA binding of other transactivators. Our results suggest that both positive and negative trans-acting factors converge their binding sites on the GTG element and confer combinatorial control on the neu gene expression. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid increase of the ultraviolet radiation (UVR)-related skin cancer incidence has attracted more and more public attention during the last few decades. Prevention and treatment of UVR-related skin cancer has become an important public health issue in the United States. Recent studies indicate that mutations in ras and/or p53 genes may be involved in UVR-induced skin tumor development but the precise molecular mechanism remains unclear. In this study, alterations of H-ras and p53 genes were investigated in different stages of carcinogenesis in a chronic UVR (solar simulator) exposure-induced Sencar mouse skin carcinogenesis model in order to clarify the role of the alterations of these genes during the skin carcinogenesis process and to further understand the mechanisms by which UVR causes skin cancer.^ Positive ras-p21 staining in cell membranes and cytosol were detected in 18/33 (55%) of squamous cell carcinomas (SCCs), but were not detected in UV-exposed skin, papillomas, or spindle cell tumors (SCTs). Positive staining of the malignant progression marker K13 was found in 17/33 (52%) of SCCs only. A significant positive correlation was observed between the K13 and the ras-p21 expression. Polymerase chain reaction (PCR)-based single strand conformation polymorphism (SSCP) analysis and gene sequencing analysis revealed three point mutations, one (codon 56) in UV-exposed non-tumor bearing skin and the other two (codons 21 and 13) in SCCs. No UV-specific mutation patterns were found.^ Positive p53 nuclear staining was found in 10/37 (27%) of SCCs and 12/24 (50%) of SCTs, but was not detected in normal skin or papillomas. PCR-based SSCP and sequencing analysis revealed eight point mutations in exons 5 and 6 (four in SCTs, two in SCCs, and two in UV-exposed skin) including six C-T or C-A transitions. Four of the mutations occurred at a dipyrimidine (CC) sequence. The pattern of the mutations indicated that the mutagenic lesions were induced by UVR.^ These results indicate that overexpression of ras-p21 in conjunction with aberrant expression of K13 occurred frequently in UVR-induced SCCs in Sencar mouse skin. The point mutation in the H-ras gene appeared to be a rare event in UVR skin carcinogenesis and may not be responsible for overexpression of ras-p21. UVR-induced P53 gene alteration is a frequent event in UVR-induced SCCs and later stage SCT tumors in Sencar mice skin, suggesting the p53 gene mutation plays an important role in skin tumor malignant progression. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo busca reconstruir la historia del concepto de Proto-República de manera crítica. Se analizará sudecurso histórico a la luz de las críticas hacia la estilometría y los estudios evolucionistas, a la vez que se propone una clave de lectura propia sobre el constructo analizado en la línea de las lecturas integrales del pensamiento platónico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo busca reconstruir la historia del concepto de Proto-República de manera crítica. Se analizará sudecurso histórico a la luz de las críticas hacia la estilometría y los estudios evolucionistas, a la vez que se propone una clave de lectura propia sobre el constructo analizado en la línea de las lecturas integrales del pensamiento platónico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo busca reconstruir la historia del concepto de Proto-República de manera crítica. Se analizará sudecurso histórico a la luz de las críticas hacia la estilometría y los estudios evolucionistas, a la vez que se propone una clave de lectura propia sobre el constructo analizado en la línea de las lecturas integrales del pensamiento platónico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proto-kerogens were isolated, by extraction and HF/HC1 treatment, from core samples of Holocene sediments of the Cariaco Trench, with interpolated ages of 900, 2850 and 6000 years, and examined via a combination of microscopic, spectroscopic and pyrolytic methods. It appears that these proto-kerogens were chiefly formed from phytoplanktonic components via the degradation-recondensation pathway. The natural sulfurisation pathway only afforded a minor contribution, in spite of the conditions prevailing in the water column and sediments that correspond to those generally considered as especially favourable for the formation of sulfurised organic matter. Proto-kerogen formation via sulfurisation, i.e. the endpoint of the continuum leading to insoluble high molecular weight structures cross-linked by sulfur and resistant to acid hydrolysis, is therefore a rather slow process under these conditions. However, the contribution of sulfurised moieties to the total proto-kerogen substantially increased with depth due to continuous sulfurisation in the time/depth interval, whereas formation through degradation-recondensation is almost complete for the 900 years old sample onwards. Proto-kerogen formation via carbohydrate sulfurisation is faster than lipid sulfurisation and only sulfurised carbohydrates were detected in the shallowest sample. In contrast, sulfurised lipids occur in the other two proto-kerogens. Moreover, their contribution relative to sulfurised carbohydrates increases with depth, probably due to the higher resistance of lipids to mineralisation compared to carbohydrates.