965 resultados para Protein secondary structure


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drying and denaturation kinetics of aqueous droplets of α-lactalbumin (α-lac), β-lactoglobulin (β-lg), and bovine serum albumin (BSA) were measured in a convective drying environment. Single droplets having an initial droplet diameter of 2 ± 0.1 mm and containing 10% (w/v) protein concentration were dried using conditioned air (65 and 80 °C, 2-3% RH, 0.5 m/s velocity) for 600 s. The denaturation of these proteins was measured by using reversed-phase HPLC. At the end of 600 s of drying 13.3 and 19.4% α-lac was found to be lost due to denaturation at 65 and 80 °C, respectively. Up to 31.0% of β-lg was found to be denatured, whereas BSA was not found to be significantly (p > 0.05) denatured in these drying conditions. The formation and strength of skin and the associated morphological features were found to be linked with the degree of denaturation of these proteins. The secondary structure of these proteins was significantly (p < 0.05) affected and altered by the drying stresses. The β-sheet and random coil contents were increased in α-lac by 6.5 and 4.0%, respectively, whereas the α-helix and β-turn contents decreased by 5.5 and 5.0%, respectively. The β-sheet and random coil contents in β-lg were increased by 7.5 and 2.0%, respectively, whereas the α-helix and β-turn contents decreased by 3.5 and 6.0%, respectively. In the case of BSA the β-sheet, α-helix, and random coil contents were found to increase, whereas the β-turn content decreased.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intermediate-resolution coarse-grained protein model PLUM [T. Bereau and M. Deserno, J. Chem. Phys., 2009, 130, 235106] is used to simulate small systems of intrinsically disordered proteins involved in biomineralisation. With minor adjustments to reduce bias toward stable secondary structure, the model generates conformational ensembles conforming to structural predictions from atomistic simulation. Without additional structural information as input, the model distinguishes regions of the chain by predicted degree of disorder, manifestation of structure, and involvement in chain dimerisation. The model is also able to distinguish dimerisation behaviour between one intrinsically disordered peptide and a closely related mutant. We contrast this against the poor ability of PLUM to model the S1 quartz-binding peptide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The human cyclin-dependent kinase 9 (CDK9) protein was expressed in E coli BL21 using the pET23a vector at 30 degrees C. Several milligrams of protein were purified from soluble fraction using ionic exchange and ATP-affinity chromatography. The structural quality of recombinant CDK9 and the estimation of its secondary structure were obtained by circular dichroism. Structural models of CDK9 presented 26% of helices in agreement with the spectra by circular dichroism analysis. This is the first report on human CDK9 expression in Escherichia coli and structure analysis and provides the first step for the development of CDK9 inhibitors. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the reaction between shikimate 3-phosphate and phosphoenolpyruvate to form 5-enolpyruvylshikimate 3-phosphate, an intermediate in the shikimate pathway, which leads to the biosynthesis of aromatic amino acids. EPSPS exists in an open conformation in the absence of substrates and/or inhibitors and in a closed conformation when bound to the substrate and/or inhibitor. In the present report, the H/D exchange properties of EPSPS from Mycobacterium tuberculosis (Mt) were investigated for both enzyme conformations using ESI mass spectrometry and circular dichroism (CD). When the conformational changes identified by H/D exchanges were mapped on the 3-D structure, it was observed that the apoenzyme underwent extensive conformational changes due to glyphosate complexation, characterized by an increase in the content of alpha-helices from 40% to 57%, while the beta-sheet content decreased from 30% to 23%. These results indicate that the enzyme underwent a series of rearrangements of its secondary structure that were accompanied by a large decrease in solvent access to many different regions of the protein. This was attributed to the compaction of 71% of alpha-helices and 57% of beta-sheets as a consequence of glyphosate binding to the enzyme. Apparently, MtEPSPS undergoes a series of inhibitor-induced conformational changes, which seem to have caused synergistic effects in preventing solvent access to the core of molecule, especially in the cleft region. This may be part of the mechanism of inhibition of the enzyme, which is required to prevent the hydration of the substrate binding site and also to induce the cleft closure to avoid entrance of the substrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mutations in the protein alpha-tropomyosin (Tm) can cause a disease known as familial hypertrophic cardiomyopathy. In order to understand how such mutations lead to protein dysfunction, three point mutations were introduced into cDNA encoding the human skeletal tropomyosin, and the recombinant Tms were produced at high levels in the yeast Pichia pastoris. Two mutations (A63V and K70T) were located in the N-terminal region of Tm and one (E180G) was located close to the calcium-dependent troponin T binding domain. The functional and structural properties of the mutant Tms were compared to those of the wild type protein. None of the mutations altered the head-to-tail polymerization, although slightly higher actin binding was observed in the mutant Tm K70T, as demonstrated in a cosedimentation assay. The mutations also did not change the cooperativity of the thin filament activation by increasing the concentrations of Ca2+. However, in the absence of troponin, all mutant Tms were less effective than the wild type in regulating the actomyosin subfragment 1 Mg2+ ATPase activity. Circular dichroism spectroscopy revealed no differences in the secondary structure of the Tms. However, the thermally induced unfolding, as monitored by circular dichroism or differential scanning calorimetry, demonstrated that the mutants were less stable than the wild type. These results indicate that the main effect of the mutations is related to the overall stability of Tm as a whole, and that the mutations have only minor effects on the cooperative interactions among proteins that constitute the thin filament.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The crystal structures of five new non-electrophilic β-strand-templated thrombin active-site inhibitors have been determined bound to the enzyme. Four co-crystallize with hirugen and inhibitor isomorphously to produce thrombin-hirugen crystals (monoclinic, space group C2), while one co-crystallizes in the hexagonal system, space group P65. A 1,4-substituted cyclohexyl moiety is conserved at the P1 position of all the inhibitors, along with a fused hetero-bicyclic five- and six-membered ring that occupies the P2 site. Amino, amidino and aminoimidazole groups are attached to the cyclohexyl ring for recognition at the S1 specificity site, while benzylsulfonyl and diphenyl groups enhance the binding at the S3 subsite. The cyclohexyl groups at the P1 positions of three of the inhibitors appear to be in the energetically favored chair conformation, while the imidazole-substituted cyclohexyl rings are in a boat conformation. Somewhat unexpectedly, the two cyclohexyl-aminoimidazole groups bind differently in the specificity site; the unique binding of one is heretofore unreported. The other inhibitors generally mimic arginyl binding at S1. This group of inhibitors combines the nonelectrophilicity and selectivity of DAPA-like compounds and the more optimal binding features of the S1-S3 sites of thrombin for peptidic molecules, which results in highly potent (binding constants 12 nM-16 pM, one being 1.1 μM) and selective (ranging from 140 to 20 000 times more selective compared with trypsin) inhibitors of thrombin. The binding modes of these novel inhibitors are correlated with their binding constants, as is their selectivity, in order to provide further insight for the design of therapeutic antithrombotic agents that inhibit thrombin directly at the active site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and drugs that inhibit this enzyme may have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Here, we describe kinetics and crystal structure of human PNP in complex with 7-methyl-6-thio-guanosine, a synthetic substrate, which is largely used in activity assays. Analysis of the structure identifies different protein conformational changes upon ligand binding, and comparison of kinetic and structural data permits an understanding of the effects of atomic substitution on key positions of the synthetic substrate and their consequences to enzyme binding and catalysis. Such knowledge may be helpful in designing new PNP inhibitors. © 2005 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The peptide NS5A-1 (PPLLESWKDPDYVPPWHG), derived from hepatitis C virus (HCV) NS5A protein, was immobilized into layer-by-layer (LbL) silk fibroin (SF) films. Deposition was monitored by UV-vis absorption measurements at each bilayer deposited. The interaction SF/peptide film induced secondary structure in NS5A-1 as indicated by fluorescence and circular dichroism (CD) measurements. Voltammetric sensor (SF/NS5A-1) properties were observed when the composite film was tested in the presence of anti-HCV. The peptide-silk fibroin interaction studied here showed new architectures for immunosensors based on antigenic peptides and SF as a suitable immobilization matrix. © 2013 American Chemical Society.