877 resultados para Propagation Rule
Resumo:
Modelling the interaction of terahertz(THz) radiation with biological tissueposes many interesting problems. THzradiation is neither obviously described byan electric field distribution or anensemble of photons and biological tissueis an inhomogeneous medium with anelectronic permittivity that is bothspatially and frequency dependent making ita complex system to model.A three-layer system of parallel-sidedslabs has been used as the system throughwhich the passage of THz radiation has beensimulated. Two modelling approaches havebeen developed a thin film matrix model anda Monte Carlo model. The source data foreach of these methods, taken at the sametime as the data recorded to experimentallyverify them, was a THz spectrum that hadpassed though air only.Experimental verification of these twomodels was carried out using athree-layered in vitro phantom. Simulatedtransmission spectrum data was compared toexperimental transmission spectrum datafirst to determine and then to compare theaccuracy of the two methods. Goodagreement was found, with typical resultshaving a correlation coefficient of 0.90for the thin film matrix model and 0.78 forthe Monte Carlo model over the full THzspectrum. Further work is underway toimprove the models above 1 THz.
Resumo:
We use a troposphere‐stratosphere model of intermediate complexity to study the atmospheric response to an idealized solar forcing in the subtropical upper stratosphere during Northern Hemisphere (NH) early winter. We investigate two conditions that could influence poleward and downward propagation of the response: (1) the representation of gravity wave effects and (2) the presence/absence of stratospheric sudden warmings (SSWs). We also investigate how the perturbation influences the timing and frequency of SSWs. Differences in the poleward and downward propagation of the response within the stratosphere are found depending on whether Rayleigh friction (RF) or a gravity wave scheme (GWS) is used to represent gravity wave effects. These differences are likely related to differences in planetary wave activity in the GWS and RF versions, as planetary wave redistribution plays an important role in the downward and poleward propagation of stratospheric signals. There is also remarkable sensitivity in the tropospheric response to the representation of the gravity wave effects. It is most realistic for GWS. Further, tropospheric responses are systematically different dependent on the absence/presence of SSWs. When only years with SSWs are examined, the tropospheric signal appears to have descended from the stratosphere, while the signal in the troposphere appears disconnected from the stratosphere when years with SSWs are excluded. Different troposphere‐stratosphere coupling mechanisms therefore appear to be dominant for years with and without SSWs. The forcing does not affect the timing of SSWs, but does result in a higher occurrence frequency throughout NH winter. Quasi‐Biennial Oscillation effects were not included.
Resumo:
The mesospheric response to the 2002 Antarctic Stratospheric Sudden Warming (SSW) is analysed using the Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS), where it represents a vertical propagation of information from the observations into the data-free mesosphere. The CMAM-DAS simulates a cooling in the lowest part of the mesosphere which is accomplished by resolved motions, but which is extended to the mid- to upper mesosphere by the response of the model's non-orographic gravity-wave drag parameterization to the change in zonal winds. The basic mechanism is that elucidated by Holton consisting of a net eastward wave-drag anomaly in the mesosphere during the SSW, although in this case there is a net upwelling in the polar mesosphere. Since the zonal-mean mesospheric response is shown to be predictable, this demonstrates that variations in the mesospheric state can be slaved to the lower atmosphere through gravity-wave drag.
Resumo:
Rensch’s rule, which states that the magnitude of sexual size dimorphism tends to increase with increasing body size, has evolved independently in three lineages of large herbivorous mammals: bovids (antelopes), cervids (deer), and macropodids (kangaroos). This pattern can be explained by a model that combines allometry,life-history theory, and energetics. The key features are thatfemale group size increases with increasing body size and that males have evolved under sexual selection to grow large enough to control these groups of females. The model predicts relationships among body size and female group size, male and female age at first breeding,death and growth rates, and energy allocation of males to produce body mass and weapons. Model predictions are well supported by data for these megaherbivores. The model suggests hypotheses for why some other sexually dimorphic taxa, such as primates and pinnipeds(seals and sea lions), do or do not conform to Rensh’s rule.
Resumo:
The variation of stratospheric equatorial wave characteristics with the phase of the quasi-biennial oscillation (QBO) is investigated using ECMWF Re-Analysis and NOAA outgoing longwave radiation (OLR) data. The impact of the QBO phases on the upward propagation of equatorial waves is found to be consistent and significant. In the easterly phase, there is larger Kelvin wave amplitude but smaller westward-moving mixed Rossby–gravity (WMRG) and n = 1 Rossby (R1) wave amplitude due to reduced propagation from the upper troposphere into the lower stratosphere, compared with the westerly phase. Differences in the wave amplitude exist in a deeper layer in summer than in winter, consistent with the seasonality of ambient zonal winds. There is a strong evidence of Kelvin wave amplitude peaking just below the descending westerly phase, suggesting that Kelvin waves act to bring the westerly phase downward. However, the corresponding evidence for WMRG and R1 waves is less clear. In the lower stratosphere there is zonal variation in equatorial waves. This reflects the zonal asymmetry of wave amplitudes in the upper troposphere, the source for the lower-stratospheric waves. In easterly winters the upper-tropospheric WMRG and R1 waves over the eastern Pacific region appear to be somewhat stronger compared to climatology, perhaps because of the accumulation of waves that are unable to propagate upward into the lower stratosphere. Vertical propagation features of these waves are generally consistent with theory and suggest a mixture of Doppler shifting by ambient flows and filtering. Some lower-stratosphere equatorial waves have a connection with preceding tropical convection, especially for Kelvin and R1 waves in winter.
Resumo:
During propagation, Magnetic Clouds (MC) interact with their environment and, in particular, may reconnect with the solar wind around it, eroding away part of its initial magnetic flux. Here we quantitatively analyze such an interaction using combined, multipoint observations of the same MC flux rope by STEREO A, B, ACE, WIND and THEMIS on November 19–20, 2007. Observation of azimuthal magnetic flux imbalance inside a MC flux rope has been argued to stem from erosion due to magnetic reconnection at its front boundary. The present study adds to such analysis a large set of signatures expected from this erosion process. (1) Comparison of azimuthal flux imbalance for the same MC at widely separated points precludes the crossing of the MC leg as a source of bias in flux imbalance estimates. (2) The use of different methods, associated errors and parametric analyses show that only an unexpectedly large error in MC axis orientation could explain the azimuthal flux imbalance. (3) Reconnection signatures are observed at the MC front at all spacecraft, consistent with an ongoing erosion process. (4) Signatures in suprathermal electrons suggest that the trailing part of the MC has a different large-scale magnetic topology, as expected. The azimuthal magnetic flux erosion estimated at ACE and STEREO A corresponds respectively to 44% and 49% of the inferred initial azimuthal magnetic flux before MC erosion upon propagation. The corresponding average reconnection rate during transit is estimated to be in the range 0.12–0.22 mV/m, suggesting most of the erosion occurs in the inner parts of the heliosphere. Future studies ought to quantify the influence of such an erosion process on geo-effectiveness.
Resumo:
In a world where massive amounts of data are recorded on a large scale we need data mining technologies to gain knowledge from the data in a reasonable time. The Top Down Induction of Decision Trees (TDIDT) algorithm is a very widely used technology to predict the classification of newly recorded data. However alternative technologies have been derived that often produce better rules but do not scale well on large datasets. Such an alternative to TDIDT is the PrismTCS algorithm. PrismTCS performs particularly well on noisy data but does not scale well on large datasets. In this paper we introduce Prism and investigate its scaling behaviour. We describe how we improved the scalability of the serial version of Prism and investigate its limitations. We then describe our work to overcome these limitations by developing a framework to parallelise algorithms of the Prism family and similar algorithms. We also present the scale up results of a first prototype implementation.
Resumo:
In a world where data is captured on a large scale the major challenge for data mining algorithms is to be able to scale up to large datasets. There are two main approaches to inducing classification rules, one is the divide and conquer approach, also known as the top down induction of decision trees; the other approach is called the separate and conquer approach. A considerable amount of work has been done on scaling up the divide and conquer approach. However, very little work has been conducted on scaling up the separate and conquer approach.In this work we describe a parallel framework that allows the parallelisation of a certain family of separate and conquer algorithms, the Prism family. Parallelisation helps the Prism family of algorithms to harvest additional computer resources in a network of computers in order to make the induction of classification rules scale better on large datasets. Our framework also incorporates a pre-pruning facility for parallel Prism algorithms.
Resumo:
Top Down Induction of Decision Trees (TDIDT) is the most commonly used method of constructing a model from a dataset in the form of classification rules to classify previously unseen data. Alternative algorithms have been developed such as the Prism algorithm. Prism constructs modular rules which produce qualitatively better rules than rules induced by TDIDT. However, along with the increasing size of databases, many existing rule learning algorithms have proved to be computational expensive on large datasets. To tackle the problem of scalability, parallel classification rule induction algorithms have been introduced. As TDIDT is the most popular classifier, even though there are strongly competitive alternative algorithms, most parallel approaches to inducing classification rules are based on TDIDT. In this paper we describe work on a distributed classifier that induces classification rules in a parallel manner based on Prism.