957 resultados para Probability distributions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. Verify the influence of different filler distributions on the subcritical crack growth (SCG) susceptibility, Weibull parameters (m and sigma(0)) and longevity estimated by the strength-probability-time (SPT) diagram of experimental resin composites. Methods. Four composites were prepared, each one containing 59 vol% of glass powder with different filler sizes (d(50) = 0.5; 0.9; 1.2 and 1.9 mu m) and distributions. Granulometric analyses of glass powders were done by a laser diffraction particle size analyzer (Sald-7001, Shimadzu, USA). SCG parameters (n and sigma(f0)) were determined by dynamic fatigue (10(-2) to 10(2) MPa/s) using a biaxial flexural device (12 x 1.2 mm; n = 10). Twenty extra specimens of each composite were tested at 10(0) MPa/s to determine m and sigma(0). Specimens were stored in water at 37 degrees C for 24 h. Fracture surfaces were analyzed under SEM. Results. In general, the composites with broader filler distribution (C0.5 and C1.9) presented better results in terms of SCG susceptibility and longevity. C0.5 and C1.9 presented higher n values (respectively, 31.2 +/- 6.2(a) and 34.7 +/- 7.4(a)). C1.2 (166.42 +/- 0.01(a)) showed the highest and C0.5 (158.40 +/- 0.02(d)) the lowest sigma(f0) value (in MPa). Weibull parameters did not vary significantly (m: 6.6 to 10.6 and sigma(0): 170.6 to 176.4 MPa). Predicted reductions in failure stress (P-f = 5%) for a lifetime of 10 years were approximately 45% for C0.5 and C1.9 and 65% for C0.9 and C1.2. Crack propagation occurred through the polymeric matrix around the fillers and all the fracture surfaces showed brittle fracture features. Significance. Composites with broader granulometric distribution showed higher resistance to SCG and, consequently, higher longevity in vitro. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present for the first time a justification on the basis of central limit theorems for the family of life distributions generated from scale-mixture of normals. This family was proposed by Balakrishnan et al. (2009) and can be used to accommodate unexpected observations for the usual Birnbaum-Saunders distribution generated from the normal one. The class of scale-mixture of normals includes normal, slash, Student-t, logistic, double-exponential, exponential power and many other distributions. We present a model for the crack extensions where the limiting distribution of total crack extensions is in the class of scale-mixture of normals. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ng and Kotz (1995) introduced a distribution that provides greater flexibility to extremes. We define and study a new class of distributions called the Kummer beta generalized family to extend the normal, Weibull, gamma and Gumbel distributions, among several other well-known distributions. Some special models are discussed. The ordinary moments of any distribution in the new family can be expressed as linear functions of probability weighted moments of the baseline distribution. We examine the asymptotic distributions of the extreme values. We derive the density function of the order statistics, mean absolute deviations and entropies. We use maximum likelihood estimation to fit the distributions in the new class and illustrate its potentiality with an application to a real data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article introduces generalized beta-generated (GBG) distributions. Sub-models include all classical beta-generated, Kumaraswamy-generated and exponentiated distributions. They are maximum entropy distributions under three intuitive conditions, which show that the classical beta generator skewness parameters only control tail entropy and an additional shape parameter is needed to add entropy to the centre of the parent distribution. This parameter controls skewness without necessarily differentiating tail weights. The GBG class also has tractable properties: we present various expansions for moments, generating function and quantiles. The model parameters are estimated by maximum likelihood and the usefulness of the new class is illustrated by means of some real data sets. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers likelihood-based inference for the family of power distributions. Widely applicable results are presented which can be used to conduct inference for all three parameters of the general location-scale extension of the family. More specific results are given for the special case of the power normal model. The analysis of a large data set, formed from density measurements for a certain type of pollen, illustrates the application of the family and the results for likelihood-based inference. Throughout, comparisons are made with analogous results for the direct parametrisation of the skew-normal distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we consider Bayesian inference on the detection of variance change-point models with scale mixtures of normal (for short SMN) distributions. This class of distributions is symmetric and thick-tailed and includes as special cases: Gaussian, Student-t, contaminated normal, and slash distributions. The proposed models provide greater flexibility to analyze a lot of practical data, which often show heavy-tail and may not satisfy the normal assumption. As to the Bayesian analysis, we specify some prior distributions for the unknown parameters in the variance change-point models with the SMN distributions. Due to the complexity of the joint posterior distribution, we propose an efficient Gibbs-type with Metropolis- Hastings sampling algorithm for posterior Bayesian inference. Thereafter, following the idea of [1], we consider the problems of the single and multiple change-point detections. The performance of the proposed procedures is illustrated and analyzed by simulation studies. A real application to the closing price data of U.S. stock market has been analyzed for illustrative purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let P be a probability distribution on q -dimensional space. The so-called Diaconis-Freedman effect means that for a fixed dimension d<distributions. The present paper provides necessary and sufficient conditions for this phenomenon in a suitable asymptotic framework with increasing dimension q . It turns out, that the conditions formulated by Diaconis and Freedman (1984) are not only sufficient but necessary as well. Moreover, letting P ^ be the empirical distribution of n independent random vectors with distribution P , we investigate the behavior of the empirical process n √ (P ^ −P) under random projections, conditional on P ^ .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many existing engineering works model the statistical characteristics of the entities under study as normal distributions. These models are eventually used for decision making, requiring in practice the definition of the classification region corresponding to the desired confidence level. Surprisingly enough, however, a great amount of computer vision works using multidimensional normal models leave unspecified or fail to establish correct confidence regions due to misconceptions on the features of Gaussian functions or to wrong analogies with the unidimensional case. The resulting regions incur in deviations that can be unacceptable in high-dimensional models. Here we provide a comprehensive derivation of the optimal confidence regions for multivariate normal distributions of arbitrary dimensionality. To this end, firstly we derive the condition for region optimality of general continuous multidimensional distributions, and then we apply it to the widespread case of the normal probability density function. The obtained results are used to analyze the confidence error incurred by previous works related to vision research, showing that deviations caused by wrong regions may turn into unacceptable as dimensionality increases. To support the theoretical analysis, a quantitative example in the context of moving object detection by means of background modeling is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we study the univariate and bivariate truncated von Mises distribution, as a generalization of the von Mises distribution (\cite{jupp1989}), (\cite{mardia2000directional}). This implies the addition of two or four new truncation parameters in the univariate and, bivariate cases, respectively. The results include the definition, properties of the distribution and maximum likelihood estimators for the univariate and bivariate cases. Additionally, the analysis of the bivariate case shows how the conditional distribution is a truncated von Mises distribution, whereas the marginal distribution that generalizes the distribution introduced in \cite{repe}. From the viewpoint of applications, we test the distribution with simulated data, as well as with data regarding leaf inclination angles (\cite{safari}) and dihedral angles in protein chains (\cite{prote}). This research aims to assert this probability distribution as a potential option for modelling or simulating any kind of phenomena where circular distributions are applicable.\par