951 resultados para Pressure response


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the adaptation of euphausiid (krill) species to oxygen minimum zones (OMZ), respiratory response and stress experiments combining hypoxia/reoxygenation exposure with warming were conducted. Experimental krill species were obtained from the Antarctic (South Georgia area), the Humboldt Current system (HCS, Chilean coast), and the Northern California Current system (NCCS, Oregon). Euphausia mucronata from the HCS shows oxyconforming or oxygen partial pressure (pO2)-dependent respiration below 80% air saturation (18 kPa). Normoxic subsurface oxygenation in winter posed a "high oxygen stress" for this species. The NCCS krill, Euphausia pacifica, and the Antarctic krill, Euphausia superba maintain respiration rates constant down to low critical pO2 values of 6 kPa (30% air saturation) and 11 kPa (55% air saturation), respectively. Antarctic krill had the lowest antioxidant enzyme activities, but the highest concentrations of the molecular antioxidant glutathione (GSH) and was not affected by 6 h exposure to moderate hypoxia. Temperate krill species had higher SOD (superoxide dismutase) values in winter than in summer, which relate to higher winter metabolic rate (E. pacifica). In all species, antioxidant enzyme activities remained constant during hypoxic exposure at habitat temperature. Warming by 7°C above habitat temperature in summer increased SOD activities and GSH levels in E. mucronata (HCS), but no oxidative damage occurred. In winter, when the NCCS is well mixed and the OMZ is deeper, +4°C of warming combined with hypoxia represents a lethal condition for E. pacifica. In summer, when the OMZ expands upwards (100 m subsurface), antioxidant defences counteracted hypoxia and reoxygenation effects in E. pacifica, but only at mildly elevated temperature (+2°C). In this season, experimental warming by +4°C reduced antioxidant activities and the hypoxia combination again caused mortality of exposed specimens. We conclude that a climate change scenario combining warming and hypoxia represents a serious threat to E. pacifica and, as a consequence, NCCS food webs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising anthropogenic carbon dioxide (CO2) dissolving into coastal waters is decreasing the pH and carbonate ion concentration, thereby lowering the saturation state of calcium carbonate (CaCO3) minerals through a process named ocean acidification (OA). The unprecedented threats posed by such low pH on calcifying larvae of several edible oyster species have not yet been fully explored. Effects of low pH (7.9, 7.6, 7.4) on the early growth phase of Portuguese oyster (Crassostrea angulata) veliger larvae was examined at ambient salinity (34 ppt) and the low-salinity (27 ppt) treatment. Additionally, the combined effect of pH (8.1, 7.6), salinity (24 and 34 ppt) and temperature (24 °C and 30 °C) was examined using factorial experimental design. Surprisingly, the early growth phase from hatching to 5-day-old veliger stage showed high tolerance to pH 7.9 and pH 7.6 at both 34 ppt and 27 ppt. Larval shell area was significantly smaller at pH 7.4 only in low-salinity. In the 3-factor experiment, shell area was affected by salinity and the interaction between salinity and temperature but not by other combinations. Larvae produced the largest shell at the elevated temperature in low-salinity, regardless of pH. Thus the growth of the Portuguese oyster larvae appears to be robust to near-future pH level (> 7.6) when combined with projected elevated temperature and low-salinity in the coastal aquaculture zones of South China Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end of century open ocean pH reductions. Projected and current ocean acidification have wide-ranging effects on many aquatic organisms, however the exact mechanisms of the impacts of ocean acidification on many of these animals remains to be characterized. Methods. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different pCO2 levels for four weeks: 400 µatm (pH 8.0), 800 µatm (pH 7.7), 1000 µatm (pH 7.6), or 2800 µatm (pH 7.3). At the end of 4 weeks a variety of physiological parameters were measured to assess the impacts of ocean acidification: tissue glycogen content and fatty acid profile, shell micromechanical properties, and response to acute heat shock. To determine the effects of ocean acidification on the underlying molecular physiology of oysters and their stress response, some of the oysters from 400 µatm and 2800 µatm were exposed to an additional mechanical stress and shotgun proteomics were done on oysters from high and low pCO2 and from with and without mechanical stress. Results. At the end of the four week exposure period, oysters in all four pCO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated pCO2. Elevated pCO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with pCO2, with numerous processes significantly affected by mechanical stimulation at high versus low pCO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Discussion. Oyster physiology is significantly altered by exposure to elevated pCO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of pCO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO(2) due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO(2). Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports for the first time upon the effects of increasing CO2 concentrations on a natural phytoplankton assemblage in a tropical estuary (the Godavari River Estuary in India). Two short-term (5-day) bottle experiments were conducted (with and without nutrient addition) during the pre-monsoon season when the partial pressure of CO2 in the surface water is quite low. The results reveal that the concentrations of total chlorophyll, the phytoplankton growth rate, the concentrations of particulate organic matter, the photosynthetic oxygen evolution rates, and the total bacterial count were higher under elevated CO2 treatments, as compared to ambient conditions (control). delta13C of particulate organic matter (POM) varied inversely with respect to CO2, indicating a clear signature of higher CO2 influx under the elevated CO2 levels. Whereas, delta13CPOM in the controls indicated the existence of an active bicarbonate transport system under limited CO2 supply. A considerable change in phytoplankton community structure was noticed, with marker pigment analysis by HPLC revealing that cyanobacteria were dominant over diatoms as CO2 concentrations increased. A mass balance calculation indicated that insufficient nutrients (N, P and Si) might have inhibited diatomgrowth compared to cyanobacteria, regardless of increased CO2 supply. The present study suggests that CO2 concentration and nutrient supply could have significant effects on phytoplankton physiology and community composition for natural phytoplankton communities in this region. However, this work was conducted during a non-discharge period (nutrient-limited conditions) and the responses of phytoplankton to increasing CO2 might not necessarily be the same during other seasons with high physicochemical variability. Further investigation is therefore needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal ecosystems that are characterized by kelp forests encounter daily pH fluctuations, driven by photosynthesis and respiration, which are larger than pH changes owing to ocean acidification (OA) projected for surface ocean waters by 2100. We investigated whether mimicry of biologically mediated diurnal shifts in pH-based for the first time on pH time-series measurements within a kelp forest-would offset or amplify the negative effects of OA on calcifiers. In a 40-day laboratory experiment, the calcifying coralline macroalga, Arthrocardia corymbosa, was exposed to two mean pH treatments (8.05 or 7.65). For each mean, two experimental pH manipulations were applied. In one treatment, pH was held constant. In the second treatment, pH was manipulated around the mean (as a step-function), 0.4 pH units higher during daylight and 0.4 units lower during darkness to approximate diurnal fluctuations in a kelp forest. In all cases, growth rates were lower at a reduced mean pH, and fluctuations in pH acted additively to further reduce growth. Photosynthesis, recruitment and elemental composition did not change with pH, but ?(13)C increased at lower mean pH. Including environmental heterogeneity in experimental design will assist with a more accurate assessment of the responses of calcifiers to OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, it has been suggested that there are conditions under which some coral species appear to be resistant to the effects of ocean acidification. To test if such resistance can be explained by environmental factors such as light and food availability, the present study investigated the effect of 3 feeding regimes crossed with 2 light levels on the response of the coral Porites rus to 2 levels of pCO2 at 28 °C. After 1, 2, and 3 weeks of incubation under experimental conditions, none of the factors-including pCO2-significantly affected area-normalized calcification and biomass-normalized calcification. Biomass also was unaffected during the first 2 weeks, but after 3 weeks, corals that were fed had more biomass per unit area than starved corals. These results suggest that P. rus is resistant to short-term exposure to high pCO2, regardless of food availability and light intensity. P. rus might therefore represent a model system for exploring the genetic basis of tolerance to OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human activities are fundamentally altering the chemistry of the world's oceans. Ocean acidification (OA) is occurring against a background of warming and an increasing occurrence of disease outbreaks, posing a significant threat to marine organisms, communities, and ecosystems. In the current study, 1H NMR spectroscopy was used to investigate the response of the blue mussel, Mytilus edulis, to a 90-day exposure to reduced seawater pH and increased temperature, followed by a subsequent pathogenic challenge. Analysis of the metabolome revealed significant differences between male and female organisms. Furthermore, males and females are shown to respond differently to environmental stress. While males were significantly affected by reduced seawater pH, increased temperature, and a bacterial challenge, it was only a reduction in seawater pH that impacted females. Despite impacting males and females differently, stressors seem to act via a generalized stress response impacting both energy metabolism and osmotic balance in both sexes. This study therefore has important implications for the interpretation of metabolomic data in mussels, as well as the impact of environmental stress in marine invertebrates in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate whether a tipping point exists in the calcification responses of coral reef calcifiers to CO2. We compared the effects of six partial pressures of CO2 (PCO2) from 28 Pa to 210 Pa on the net calcification of four corals (Acropora pulchra, Porites rus, Pocillopora damicornis, and Pavona cactus), and four calcified algae (Hydrolithon onkodes, Lithophyllum flavescens, Halimeda macroloba, and Halimeda minima). After 2 weeks of acclimation in a common environment, organisms were incubated in 12 aquaria for 2 weeks at the targeted PCO2 levels and net calcification was quantified. All eight species calcified at the highest PCO2 in which the calcium carbonate aragonite saturation state was ~1. Calcification decreased linearly as a function of increasing partial PCO2 in three corals and three algae. Overall, the decrease in net calcification as a function of decreasing pH was ~10% when ambient PCO2 (39 Pa) was doubled. The calcification responses of P. damicornis and H. macroloba were unaffected by increasing PCO2. These results are inconsistent with the notion that coral reefs will be affected by rising PCO2 in a response characterized by a tipping point. Instead, our findings combined among taxa suggest a gradual decline in calcification will occur, but this general response includes specific cases of complete resistance to rising PCO2. Together our results suggest that the overall response of coral reef communities to ocean acidification will be monotonic and inversely proportional to PCO2, with reef-wide responses dependent on the species composition of calcifying taxa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sustained absorption of anthropogenically released atmospheric CO2 by the oceans is modifying seawater carbonate chemistry, a process termed ocean acidification (OA). By the year 2100, the worst case scenario is a decline in the average oceanic surface seawater pH by 0.3 units to 7.75. The changing seawater carbonate chemistry is predicted to negatively affect many marine species, particularly calcifying organisms such as coralline algae, while species such as diatoms and fleshy seaweed are predicted to be little affected or may even benefit from OA. It has been hypothesized in previous work that the direct negative effects imposed on coralline algae, and the direct positive effects on fleshy seaweeds and diatoms under a future high CO2 ocean could result in a reduced ability of corallines to compete with diatoms and fleshy seaweed for space in the future. In a 6-week laboratory experiment, we examined the effect of pH 7.60 (pH predicted to occur due to ocean acidification just beyond the year 2100) compared to pH 8.05 (present day) on the lateral growth rates of an early successional, cold-temperate species assemblage dominated by crustose coralline algae and benthic diatoms. Crustose coralline algae and benthic diatoms maintained positive growth rates in both pH treatments. The growth rates of coralline algae were three times lower at pH 7.60, and a non-significant decline in diatom growth meant that proportions of the two functional groups remained similar over the course of the experiment. Our results do not support our hypothesis that benthic diatoms will outcompete crustose coralline algae under future pH conditions. However, while crustose coralline algae were able to maintain their presence in this benthic rocky reef species assemblage, the reduced growth rates suggest that they will be less capable of recolonizing after disturbance events, which could result in reduced coralline cover under OA conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactive effects of nutrient availability and ocean acidification on coral calcification were investigated using post-settlement juvenile corals of Acropora digitifera cultured in nutrient-sufficient or nutrient-depleted seawater for 4 d and then exposed to seawater with different partial pressure of carbon dioxide () conditions (38.8 or 92.5 Pa) for 10 d. After the nutrient pretreatment, corals in the high nutrient condition (HN corals) had a significantly higher abundance of endosymbiotic algae than did those in the low nutrient condition (LN corals). The high abundance of endosymbionts in HN corals was reduced as a result of subsequent seawater acidification, and the chlorophyll a per algal cell increased. The photosynthetic oxygen production rate by endosymbionts was enhanced by the acidified seawater regardless of the nutrient treatment, indicating that the reduction in endosymbiont density in HN corals due to acidification was compensated for by the increase in chlorophyll a per cell. Though the photosynthetic rate increased in the acidified conditions for both LN and HN corals, the calcification rate significantly decreased for LN corals but not for HN corals. The acquisition of nutrients from seawater, rather than the increase in alkalinity caused by photosynthesis, might effectively alleviate the negative response of coral calcification to seawater acidification, suggesting that the response of corals and their endosymbionts to ocean acidification can be influenced by nutrient conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured the relationship between CO2-induced seawater acidification, photo-physiological performance and intracellular pH (pHi) in a model cnidarian-dinoflagellate symbiosis - the sea anemone Aiptasia sp. -under ambient (289.94 ± 12.54 µatm), intermediate (687.40 ± 25.10 µatm) and high (1459.92 ± 65.51 µatm) CO2 conditions. These treatments represented current CO2 levels, in addition to CO2 stabilisation scenarios IV and VI provided by the Intergovernmental Panel on Climate Change (IPCC). Anemones were exposed to each treatment for two months and sampled at regular intervals. At each time-point we measured a series of physiological responses: maximum dark-adapted fluorescent yield of PSII (Fv/Fm), gross photosynthetic rate, respiration rate, symbiont population density, and light-adapted pHi of both the dinoflagellate symbiont and isolated host anemone cell. We observed increases in all but one photo-physiological parameter (Pgross:R ratio). At the cellular level, increases in light-adapted symbiont pHi were observed under both intermediate and high CO2 treatments, relative to control conditions (pHi 7.35 and 7.46 versus pHi 7.25, respectively). The response of light-adapted host pHi was more complex, however, with no change observed under the intermediate CO2 treatment, but a 0.3 pH-unit increase under the high CO2 treatment (pHi 7.19 and 7.48, respectively). This difference is likely a result of a disproportionate increase in photosynthesis relative to respiration at the higher CO2 concentration. Our results suggest that, rather than causing cellular acidosis, the addition of CO2 will enhance photosynthetic performance, enabling both the symbiont and host cell to withstand predicted ocean acidification scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcifying foraminifera are expected to be endangered by ocean acidification; however, the response of a complete community kept in natural sediment and over multiple generations under controlled laboratory conditions has not been constrained to date. During 6 months of incubation, foraminiferal assemblages were kept and treated in natural sediment with pCO2-enriched seawater of 430, 907, 1865 and 3247 µatm pCO2. The fauna was dominated by Ammonia aomoriensis and Elphidium species, whereas agglutinated species were rare. After 6 months of incubation, pore water alkalinity was much higher in comparison to the overlying seawater. Consequently, the saturation state of Omega calc was much higher in the sediment than in the water column in nearly all pCO2 treatments and remained close to saturation. As a result, the life cycle (population density, growth and reproduction) of living assemblages varied markedly during the experimental period, but was largely unaffected by the pCO2 treatments applied. According to the size-frequency distribution, we conclude that foraminifera start reproduction at a diameter of 250 µm. Mortality of living Ammonia aomoriensis was unaffected, whereas size of large and dead tests decreased with elevated pCO2 from 285 µm (pCO2 from 430 to 1865 µatm) to 258 µm (pCO2 3247 µatm). The total organic content of living Ammonia aomoriensis has been determined to be 4.3% of CaCO3 weight. Living individuals had a calcium carbonate production rate of 0.47 g/m**2/a, whereas dead empty tests accumulated a rate of 0.27 g /m**2/a. Although Omega calc was close to 1, approximately 30% of the empty tests of Ammonia aomoriensis showed dissolution features at high pCO2 of 3247 µatm during the last 2 months of incubation. In contrast, tests of the subdominant species, Elphidium incertum, stayed intact. Our results emphasize that the sensitivity to ocean acidification of the endobenthic foraminifera Ammonia aomoriensis in their natural sediment habitat is much lower compared to the experimental response of specimens isolated from the sediment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH < = 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79-97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO2-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH4Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na-free seawater indicate a potential role of Na/H plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited.