986 resultados para Pressure coefficient
Resumo:
Pressure transitions of Se-Te alloys have been studied over the entire range of compositions. Conductivities have also been measured as a function of temperature and alloy composition. Transition pressures, activation barriers and isothermal conductivities exhibit distinct changes of slope in their variation as a function of composition at about 8 at % of Te. Transition pressures change slope at not, vert, similar 35% Te also. An attempt has been made to explain these observations on the basis of the size effect of Te which, in turn, affects the electron energy dispersions in the band structure.
Resumo:
Results are reported from an extensive series of experiments on boundary layers in which the location of pressure gradient and transition onset could be varied almost independently, by judicious use of tunnel wall liners and transition-fixing devices. The experiments show that the transition zone is sensitive to the pressure gradient especially near onset, and can be significantly asymmetric; no universal similarity appears valid in general. Observed intermittency distributions cannot be explained on the basis of the hypothesis, often made, that the spot propagates at speeds proportional to the local free-stream velocity but is otherwise unaffected by the pressure gradient.
Resumo:
A locked high-pressure cell with working pressure range up to 10 kbars suitable for low-temperature studies to 77 K has been described. It can be used for both EPR and NMR studies of single crystals (and other solid samples). The high-pressure seal and all other aspects of the cell remain the same for either application. Only a change of the bottom plug is required for a switch from a nuclear-magnetic-resonance (NMR) to an electron-paramagnetic-resonance (EPR) experiment. Details of the procedure for the calibration of pressure inside the cell at various temperatures are discussed. The performance of the cell in EPR (Cr3+ion) and NMR (27Al nucleus) studies is reported.
Resumo:
The electrical resistivity of bulk semiconducting amorphous TlxSe100-x alloys with 0 ≤ x ≤ 25 has been investigated up to a pressure of 14 GPa and down to liquidnitrogen temperature by use of a Bridgman anvil device. All the glasses undergo a discontinuous pressure-induced semiconducting-to-metal transition. X-ray diffraction studies on the pressure-recovered samples show that the high-pressure phase is the crystalline phase. The pressure-induced crystalline products are identified to be a mixture of Se having a hexagonal structure with a = 4·37 Aring and c = 4·95 Aring and TlSe having a tetragonal structure with a = 8·0 Aring and c = 7·0 Aring
Resumo:
A desalination system is a complex multi energy domain system comprising power/energy flow across several domains such as electrical, thermal, and hydraulic. The dynamic modeling of a desalination system that comprehensively addresses all these multi energy domains is not adequately addressed in the literature. This paper proposes to address the issue of modeling the various energy domains for the case of a single stage flash evaporation desalination system. This paper presents a detailed bond graph modeling of a desalination unit with seamless integration of the power flow across electrical, thermal, and hydraulic domains. The paper further proposes a performance index function that leads to the tracking of the optimal chamber pressure giving the optimal flow rate for a given unit of energy expended. The model has been validated in steady state conditions by simulation and experimentation.
Resumo:
Controversy exists in the published literature as to the effect of silicon content and pressure on the dry sliding wear of Al---Si alloys. The present paper attempts to clarify the question by reporting a statistical analysis of data obtained from factorially designed experiments conducted on a pinon-disc machine in the pressure range 0.105–1.733 MPa and speed range 0.19–0.94 m s−1. Under these conditions it was found that, in the range 4–24 wt.% Si, wear of binary unmodified alloys does not significantly differ between the alloys. However, it is significantly less than that corresponding to an alloy containing no silicon. The effect of pressure on wear rate was found to be linear and monotonie and, over the narrow range of speeds used, the wear rate was found to be unaffected by speed. The coefficient of friction was found to be insensitive to variations in silicon content, pressure and speed.
Resumo:
Measurements of the ratio of diffusion coefficient to mobility (D/ mu ) of electrons in SF6-N2 and CCl2F2-N2 mixtures over the range 80
Resumo:
A simple stochastic model of a fish population subject to natural and fishing mortalities is described. The fishing effort is assumed to vary over different periods but to be constant within each period. A maximum-likelihood approach is developed for estimating natural mortality (M) and the catchability coefficient (q) simultaneously from catch-and-effort data. If there is not enough contrast in the data to provide reliable estimates of both M and q, as is often the case in practice, the method can be used to obtain the best possible values of q for a range of possible values of M. These techniques are illustrated with tiger prawn (Penaeus semisulcatus) data from the Northern Prawn Fishery of Australia.
Resumo:
In open-cut strip mining, waste material is placed in-pit to minimise operational mine costs. Slope failures in these spoil piles pose a significant safety risk to personnel, along with a financial risk from loss of equipment and scheduling delays. It has been observed that most spoil pile failures occur when the pit has been previously filled with water and then subsequently dewatered. The failures are often initiated at the base of spoil piles where the material can undergo significant slaking (disintegration) over time due to overburden pressure and water saturation. It is important to understand how the mechanical properties of base spoil material are affected by slaking when designing safe spoil pile slope angles, heights, and dewatering rates. In this study, fresh spoil material collected from a coal mine in Brown Basin Coalfield of Queensland, Australia was subjected to high overburden pressure (0 – 900 kPa) under saturated condition and maintained over a period of time (0 – 6 months) allowing the material to slake. To create the above conditions, laboratory designed pressure chambers were used. Once a spoil sample was slaked under certain overburden pressure over a period of time, it was tested for classification, permeability, and strength properties. Results of this testing program suggested that the slaking of saturated coal mine spoil increase with overburden pressure and the time duration over which the overburden pressure was maintained. Further, it was observed that shear strength and permeability of spoil decreased with increase in spoil slaking.
Resumo:
We have carried out temperature- and pressure-dependent Raman and x-ray measurements on single crystals of Tb2Ti2O7. We attribute the observed anomalous temperature dependence of phonons to phonon-phonon anharmonic interactions. The quasiharmonic and anharmonic contributions to the temperature-dependent changes in phonon frequencies are estimated quantitatively using mode Grüneisen parameters derived from pressure-dependent Raman experiments and bulk modulus from high-pressure x-ray measurements. Further, our Raman and x-ray data suggest a subtle structural deformation of the pyrochlore lattice at ~9 GPa. We discuss possible implications of our results on the spin-liquid behavior of Tb2Ti2O7.
Resumo:
Experimental results are presented of ionisation (a)a nd electron attachment ( v ) coefficients evaluated from the steady-state Townsend curregnrto wth curves for SFsN2 and CC12FrN2 mixtures over the range 60 S E/P 6 240 (where E is the electric field in V cm" and P is the pressure in Torr reduced to 20'C). In both the mixtures the attachment coefficients (vmu) evaluated were found to follow the relationship; where 7 is the attachment coefficient of pure electronegative gas, F is the fraction of the electronegative gas in the mixture and /3 is a constant. The ionisation coefficients (amlx) generally obeyed the relationship where w2a nd aAa re thei onisation coefficients of nitrogen and the attachinggraess pectively. However, in case of CC12FrN2 mixtures, there were maxima in the a,,,v,a,l ues for CCI2F2 concentrations varying between 10% and 30% at all values of E/P investigated. Effective ionisation coefficients (a - p)/P obtained in these binary mixtures show that the critical E/P (corresponding to (a - q)/P = 0) increases with increase in the concentration of the electronegative gas up to 40%. Further increase in the electronegative gas content does not seem to alter the critical E/P.
Resumo:
High pressure resistivity measurements on Se100-xTex, glasses for 0≤x≤30 are reported. Two composition regions, where the transport and transformation behaviour are different, are identified. For 0≤x≤6, there is a first-order-like transformation to metallic crystalline states, while for x>6 the transformation appears to be continuous. Glass-transition temperatures also show differences in trends as a function of composition around 6% Te. An attempt is made to explain the composition-dependent trends on the basis of known structural features of selenium glasses and of the nature of tellurium bonding. At concentrations with up to 6% tellurium, Te most likely enters selenium chain terminations, substituting for negatively charged Se1- defects, while at larger concentrations, tellurium probably enters chains and rings by a random substitution.
Resumo:
0:- ions have been detected and measured in a positive column of glow discharge in oxygen between 0.04 and 0.17 Torr. A suitable ion-molecule reaction has been proposed, which appears to be supported by the mass spectrometer measurements.