945 resultados para Precision Xtra®
Resumo:
This paper introduces a new technique in the investigation of limited-dependent variable models. This paper illustrates that variable precision rough set theory (VPRS), allied with the use of a modern method of classification, or discretisation of data, can out-perform the more standard approaches that are employed in economics, such as a probit model. These approaches and certain inductive decision tree methods are compared (through a Monte Carlo simulation approach) in the analysis of the decisions reached by the UK Monopolies and Mergers Committee. We show that, particularly in small samples, the VPRS model can improve on more traditional models, both in-sample, and particularly in out-of-sample prediction. A similar improvement in out-of-sample prediction over the decision tree methods is also shown.
Resumo:
A self-reference fiber Michelson interferometer measurement system, which employs fiber Bragg gratings (FBGs) as in-fiber reflective mirrors and interleaves together two fiber Michelson interferometers that share the common-interferometric-optical path, is presented. One of the fiber interferometers is used to stabilise the system by the use of an electronic feedback loop to compensate the influences resulting from the environmental disturbances, while the other one is used to perform the measurement task. The influences resulting from the environmental disturbances have been eliminated by the compensating action of the electronic feedback loop, this makes the system suitable for on-line precision measurement. By means of the homodyne phase-tracking technique, the linearity of the measurement results of displacement measurements has been very high.
Resumo:
We report statistical time-series analysis tools providing improvements in the rapid, precision extraction of discrete state dynamics from time traces of experimental observations of molecular machines. By building physical knowledge and statistical innovations into analysis tools, we provide techniques for estimating discrete state transitions buried in highly correlated molecular noise. We demonstrate the effectiveness of our approach on simulated and real examples of steplike rotation of the bacterial flagellar motor and the F1-ATPase enzyme. We show that our method can clearly identify molecular steps, periodicities and cascaded processes that are too weak for existing algorithms to detect, and can do so much faster than existing algorithms. Our techniques represent a step in the direction toward automated analysis of high-sample-rate, molecular-machine dynamics. Modular, open-source software that implements these techniques is provided.
Resumo:
Visual stress is a condition characterised by symptoms of eyestrain, headaches and distortions of visual perception when reading text. The symptoms are frequently alleviated with spectral filters and precision tinted ophthalmic lenses. Visual stress is thought to arise due to cortical hyperexcitability and is associated with a range of neurological conditions. Cortical hyperexcitability is known to occur following stroke. The case presented describes visual stress symptoms resulting from stroke, subsequently managed with spectral filters and precision tinted ophthalmic lenses. The case also highlights that the spectral properties of the tint may need to be modified if the disease course alters.
Resumo:
Precision agriculture (PA) describes a suite of IT based tools which allow farmers to electronically monitor soil and crop conditions and analyze treatment options. This study tests a model explaining the difficulties of PA technology adoption. The model draws on theories of technology acceptance and diffusion of innovation and is validated using survey data from farms in Canada. Findings highlight the importance of compatibility among PA technology components and the crucial role of farmers' expertise. The model provides the theoretical and empirical basis for developing policies and initiatives to support PA technology adoption.
Resumo:
Emulsions and microcapsules are typical structures in various dispersion formulations for pharmaceutical, food, personal and house care applications. Precise control over size and size distribution of emulsion droplets and microcapsules are important for effective use and delivery of active components and better product quality. Many emulsification technologies have been developed to meet different formulation and processing requirements. Among them, membrane and microfluidic emulsification as emerging technologies have the feature of being able to precisely manufacture droplets in a drop-by-drop manner to give subscribed sizes and size distributions with lower energy consumption. This paper reviews fundamental sciences and engineering aspects of emulsification, membrane and microfluidic emulsification technologies and their use for precision manufacture of emulsions for intensified processing. Generic application examples are given for single and double emulsions and microcapsules with different structure features. © 2013 The Society of Powder Technology Japan. Published by Elsevier B.V.
Resumo:
When machining a large-scale aerospace part, the part is normally located and clamped firmly until a set of features are machined. When the part is released, its size and shape may deform beyond the tolerance limits due to stress release. This paper presents the design of a new fixing method and flexible fixtures that would automatically respond to workpiece deformation during machining. Deformation is inspected and monitored on-line, and part location and orientation can be adjusted timely to ensure follow-up operations are carried out under low stress and with respect to the related datum defined in the design models.
Resumo:
High precision manufacturers continuously seek out disruptive technologies to improve the quality, cost, and delivery of their products. With the advancement of machine tool and measurement technology many companies are ready to capitalise on the opportunity of on-machine measurement (OMM). Coupled with business case, manufacturing engineers are now questioning whether OMM can soon eliminate the need for post-process inspection systems. Metrologists will however argue that the machining environment is too hostile and that there are numerous process variables which need consideration before traceable measurement on-the-machine can be achieved. In this paper we test the measurement capability of five new multi-axis machine tools enabled as OMM systems via on-machine probing. All systems are tested under various operating conditions in order to better understand the effects of potentially significant variables. This investigation has found that key process variables such as machine tool warm-up and tool-change cycles can have an effect on machine tool measurement repeatability. New data presented here is important to many manufacturers whom are considering utilising their high precision multi-axis machine tools for both the creation and verification of their products.
Resumo:
We propose a long range, high precision optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a CW pump laser with moderate power and a section of fiber, which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR due to its ultra-wide-band chaotic behavior, and mm-scale spatial resolution is demonstrated. Then we analyze the key factors limiting the operational range of such an OTDR, e. g., integral Rayleigh backscattering and the fiber loss, which degrades the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. Finally, we experimentally demonstrate a correlation OTDR with 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of theoretical analysis.
Resumo:
The fabrication precision is one of the most critical challenges to the creation of practical photonic circuits composed of coupled high Q-factor microresonators. While very accurate transient tuning of microresonators based on local heating has been reported, the record precision of permanent resonance positioning achieved by post-processing is still within 1 and 5 GHz. Here we demonstrate two coupled bottle microresonators fabricated at the fiber surface with resonances that are matched with a better than 0.16 GHz precision. This corresponds to a better than 0.17 Å precision in the effective fiber radius variation. The achieved fabrication precision is only limited by the resolution of our optical spectrum analyzer and can be potentially improved by an order of magnitude.
Resumo:
Parameter design is an experimental design and analysis methodology for developing robust processes and products. Robustness implies insensitivity to noise disturbances. Subtle experimental realities, such as the joint effect of process knowledge and analysis methodology, may affect the effectiveness of parameter design in precision engineering; where the objective is to detect minute variation in product and process performance. In this thesis, approaches to statistical forced-noise design and analysis methodologies were investigated with respect to detecting performance variations. Given a low degree of process knowledge, Taguchi's methodology of signal-to-noise ratio analysis was found to be more suitable in detecting minute performance variations than the classical approach based on polynomial decomposition. Comparison of inner-array noise (IAN) and outer-array noise (OAN) structuring approaches showed that OAN is a more efficient design for precision engineering. ^
Resumo:
The Intoxilyzer 5000 was tested for calibration curve linearity for ethanol vapor concentration between 0.020 and 0.400g/210L with excellent linearity. Calibration error using reference solutions outside of the allowed concentration range, response to the same ethanol reference solution at different temperatures between 34 and 38$\sp\circ$C, and its response to eleven chemicals, 10 mixtures of two at the time, and one mixture of four chemicals potentially found in human breath have been evaluated. Potential interferents were chosen on the basis of their infrared signatures and the concentration range of solutions corresponding to the non-lethal blood concentration range of various volatile organic compounds reported in the literature. The result of this study indicates that the instrument calibrates with solutions outside the allowed range up to $\pm$10% of target value. Headspace FID dual column GC analysis was used to confirm the concentrations of the solutions. Increasing the temperature of the reference solution from 34 to 38$\sp\circ$C resulted in linear increases in instrument recorded ethanol readings with an average increase of 6.25%/$\sp\circ$C. Of the eleven chemicals studied during this experiment, six, isopropanol, toluene, methyl ethyl ketone, trichloroethylene, acetaldehyde, and methanol could reasonably interfere with the test at non-lethal reported blood concentration ranges, the mixtures of those six chemicals showed linear additive results with a combined effect of as much as a 0.080g/210L reading (Florida's legal limit) without any ethanol present. ^
Resumo:
Historically, memory has been evaluated by examining how much is remembered, however a more recent conception of memory focuses on the accuracy of memories. When using this accuracy-oriented conception of memory, unlike with the quantity-oriented approach, memory does not always deteriorate over time. A possible explanation for this seemingly surprising finding lies in the metacognitive processes of monitoring and control. Use of these processes allows people to withhold responses of which they are unsure, or to adjust the precision of responses to a level that is broad enough to be correct. The ability to accurately report memories has implications for investigators who interview witnesses to crimes, and those who evaluate witness testimony. ^ This research examined the amount of information provided, accuracy, and precision of responses provided during immediate and delayed interviews about a videotaped mock crime. The interview format was manipulated such that a single free narrative response was elicited, or a series of either yes/no or cued questions were asked. Instructions provided by the interviewer indicated to the participants that they should either stress being informative, or being accurate. The interviews were then transcribed and scored. ^ Results indicate that accuracy rates remained stable and high after a one week delay. Compared to those interviewed immediately, after a delay participants provided less information and responses that were less precise. Participants in the free narrative condition were the most accurate. Participants in the cued questions condition provided the most precise responses. Participants in the yes/no questions condition were most likely to say “I don’t know”. The results indicate that people are able to monitor their memories and modify their reports to maintain high accuracy. When control over precision was not possible, such as in the yes/no condition, people said “I don’t know” to maintain accuracy. However when withholding responses and adjusting precision were both possible, people utilized both methods. It seems that concerns that memories reported after a long retention interval might be inaccurate are unfounded. ^
Resumo:
The authors thank Professor Iber^e Luiz Caldas for the suggestions and encouragement. The authors F.F.G.d.S., R.M.R., J.C.S., and H.A.A. acknowledge the Brazilian agency CNPq and state agencies FAPEMIG, FAPESP, and FAPESC, and M.S.B. also acknowledges the EPSRC Grant Ref. No. EP/I032606/1.