997 resultados para Population fluctuation
Resumo:
1 Five experiments were conducted during 1995-99 in stone fruit orchards on the Central Coast and in inland New South Wales, Australia, on the use of synthetic aggregation pheromones and a coattractant to suppress populations of the ripening fruit pests Carpophilus spp. (Coleoptera: Nitidulidae). 2 Perimeter-based suppression traps baited with pheromone and coattractant placed at 3m intervals around small fruit blocks, caught large numbers of Carpophilus spp. Very small populations of Carpophilus spp. occurred within blocks, and fruit damage was minimal. 3 Carpophilus spp. populations in stone fruit blocks 15-370m from suppression traps were also small and non-damaging, indicating a large zone of pheromone attractivity. 4 Pheromone/coattractant-baited suppression traps appeared to divert Carpophilus spp. from nearby (130 m) ripening stone fruit. Ten metal drums containing decomposing fruit, baited with pheromone and treated with insecticide, attracted Carpophilus spp. and appeared to reduce populations and damage to ripening fruit at distances of 200-500 m. Populations and damage were significantly greater within 200m of the drums and may have been caused by ineffective poisoning or poor quality/overcrowding of fruit resources in the drums. 5 Suppression of Carpophilus spp. populations using synthetic aggregation pheromones and a coattractant appears to be a realistic management option in stone fruit orchards. Pheromone-mediated diversion of beetle populations from ripening fruit may be more practical than perimeter trapping, but more research is needed on the effective range of Carpophilus pheromones and the relative merits of trapping compared to attraction to insecticide-treated areas.
Resumo:
Large larval populations of the scarabaeid beetle Heteronyx piceus Blanchard that occur under peanuts, but not maize, in the South Burnett region of Australia are the result of a high rate and prolonged period of egg production by females feeding on peanut foliage. Heteronyx piceus is a relatively sedentary species and movement of females between adjacent fields is low. Populations of H. piceus varied markedly with landscape position. High larval populations are more likely (1 in 4 chance) to be encountered on the ‘scrub’ soils in the upper parts of the landscape than in the ‘forest’ soils in the lower half (1 in 20 chance), indicating that soil type/landscape position is a key risk factor in assessing the need for management intervention. The studies indicate that, because of the species' sedentary nature, the most meaningful population entity for management of H. piceus is the individual field, rather than the whole-farm or the region. The implications of this population ecology for management of the pest are discussed in relation to control strategies.
Resumo:
A new method is suggested where the thermal activation energy is measured directly and not as a slope of an Arrhenius plot. The sample temperature T is allowed to fluctuate about a temperature T0. The reverse-biased sample diode is repeatedly pulsed towards zero bias and the transient capacitance C1 at time t1 is measured The activation energy is obtained by monitoring the fluctuations in C1 and T. The method has been used to measure the activation energy of the gold acceptor level in silicon.
Resumo:
It is now well known that in extreme quantum limit, dominated by the elastic impurity scattering and the concomitant quantum interference, the zero-temperature d.c. resistance of a strictly one-dimensional disordered system is non-additive and non-self-averaging. While these statistical fluctuations may persist in the case of a physically thin wire, they are implicitly and questionably ignored in higher dimensions. In this work, we have re-examined this question. Following an invariant imbedding formulation, we first derive a stochastic differential equation for the complex amplitude reflection coefficient and hence obtain a Fokker-Planck equation for the full probability distribution of resistance for a one-dimensional continuum with a Gaussian white-noise random potential. We then employ the Migdal-Kadanoff type bond moving procedure and derive the d-dimensional generalization of the above probability distribution, or rather the associated cumulant function –‘the free energy’. For d=3, our analysis shows that the dispersion dominates the mobilitly edge phenomena in that (i) a one-parameter B-function depending on the mean conductance only does not exist, (ii) an approximate treatment gives a diffusion-correction involving the second cumulant. It is, however, not clear whether the fluctuations can render the transition at the mobility edge ‘first-order’. We also report some analytical results for the case of the one dimensional system in the presence of a finite electric fiekl. We find a cross-over from the exponential to the power-low length dependence of resistance as the field increases from zero. Also, the distribution of resistance saturates asymptotically to a poissonian form. Most of our analytical results are supported by the recent numerical simulation work reported by some authors.
Resumo:
This study compares estimates of the census size of the spawning population with genetic estimates of effective current and long-term population size for an abundant and commercially important marine invertebrate, the brown tiger prawn (Penaeus esculentus). Our aim was to focus on the relationship between genetic effective and census size that may provide a source of information for viability analyses of naturally occurring populations. Samples were taken in 2001, 2002 and 2003 from a population on the east coast of Australia and temporal allelic variation was measured at eight polymorphic microsatellite loci. Moments-based and maximum-likelihood estimates of current genetic effective population size ranged from 797 to 1304. The mean long-term genetic effective population size was 9968. Although small for a large population, the effective population size estimates were above the threshold where genetic diversity is lost at neutral alleles through drift or inbreeding. Simulation studies correctly predicted that under these experimental conditions the genetic estimates would have non-infinite upper confidence limits and revealed they might be overestimates of the true size. We also show that estimates of mortality and variance in family size may be derived from data on average fecundity, current genetic effective and census spawning population size, assuming effective population size is equivalent to the number of breeders. This work confirms that it is feasible to obtain accurate estimates of current genetic effective population size for abundant Type III species using existing genetic marker technology.
Resumo:
Fusarium wilt of cotton, caused by the fungus Fusarium oxysporum Schlechtend. f. sp. vasinfectum (Atk.) Snyd. & Hans, was first identified in 1892 in cotton growing in sandy acid soils in Alabama (8). Although the disease was soon discovered in other major cotton-producing areas, it did not become global until the end of the next century. After its original discovery, Fusarium wilt of cotton was reported in Egypt (1902) (30), India (1908) (60), Tanzania (1954) (110), California (1959) (33), Sudan (1960) (44), Israel (1970) (27), Brazil (1978) (5), China (1981) (17), and Australia (1993) (56). In addition to a worldwide distribution, Fusarium wilt occurs in all four of the domesticated cottons, Gossypium arboretum L., G. barbadense L., G. herbaceum L., and G. hirsutum L. (4,30). Disease losses in cotton are highly variable within a country or region. In severely infested fields planted with susceptible cultivars, yield losses can be high. In California, complete crop losses in individual fields have been observed (R. M. Davis, unpublished). Disease loss estimates prepared by the National Cotton Disease Council indicate losses of over 109,000 bales (227 kg or 500 lb) in the United States in 2004 (12).
Resumo:
QTL for stem sugar-related and other agronomic traits were identified in a converted sweet (R9188) × grain (R9403463-2-1) sorghum population. QTL analyses were conducted using phenotypic data for 11 traits measured in two field experiments and a genetic map comprising 228 SSR and AFLP markers grouped into 16 linkage groups, of which 11 could be assigned to the 10 sorghum chromosomes (SBI-01 to SBI-10). QTL were identified for all traits and were generally co-located to five locations (SBI-01, SBI-03, SBI-05, SBI-06 and SBI-10). QTL alleles from R9188 were detected for increased sucrose content and sugar content on SBI-01, SBI-05 and SBI-06. R9188 also contributed QTL alleles for increased Brix on SBI-05 and SBI-06, and increased sugar content on SBI-03. QTL alleles from R9403463-2-1 were found for increased sucrose content and sucrose yield on SBI-10, and increased glucose content on SBI-07. QTL alleles for increased height, later flowering and greater total dry matter yield were located on SBI-01 of R9403463-2-1, and SBI-06 of R9188. QTL alleles for increased grain yield from both R9403463-2-1 and R9188 were found on SBI-03. As an increase in stem sugars is an important objective in sweet sorghum breeding, the QTL identified in this study could be further investigated for use in marker-assisted selection of sweet sorghum.
Resumo:
The genetic population structure of red snapper Lutjanus malabaricus and Lutjanus erythropterus in eastern Indonesia and northern Australia was investigated by allozyme electrophoresis and sequence variation in the control region of mtDNA. Samples were collected from eight sites in Indonesia and four sites in northern Australia for both species. A total of 13 allozyme loci were scored. More variable loci were observed in L. malabaricus than in L. erythropterus. Sequence variation in the control region (left domain) of the mitochondrial genome was assessed by RFLP and direct sequencing. MtDNA haplotype diversity was high (L. erythropterus, 0.95 and L. malabaricus, 0.97), as was intraspecific sequence divergence, (L. erythropterus, 0.0-12.5% and L. malabaricus, 0.0-9.5%). The pattern of mtDNA haplotype frequencies grouped both species into two broad fisheries stocks with a genetic boundary either between Kupang and Sape (L. malabaricus) or between Kupang and Australian Timor Sea (L. erythropertus). The allozyme analyses revealed similar boundaries for L. erythropterus. Seven allozymes stocks compared to two mtDNA stocks of L. malabaricus including Ambon, which was not sampled with mtDNA, however, were reported. Possible reasons for differences in discrimination between the methods include: i) increased power of multiple allozyme loci over the single mtDNA locus, ii) insufficient gene sampling in the mtDNA control region and iii) relative evolutionary dynamics of nuclear (allozyme loci) and mitochondrial DNA in these taxa. Allozyme and haplotype data did not distinguish separate stocks among the four Australian locations nor the central Indonesian (Bali and Sape locations) for both L. malabaricus and L. erythropterus.
Resumo:
A unified approach to the problem of electrochemical fluctuations is presented. On the basis of the Langevin procedure, primary noise sources are introduced in the basic phenomenological equations and a discussion of the secondary noise sources arising in the expressions for the power spectra of currents is given.
Resumo:
A discussion of the modelling of the primary and secondary noise sources introduced in the formalism of fluctuation phenomena in a previous report is presented. It is illustrated that the generalisation of the modelling of noise sources in mass transport as given by Tyagai is limited in its applicability. A general procedure for the same is discussed in detail.
Resumo:
Males of some species included in the Bactrocera dorsalis complex are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl) benzene), a natural compound occurring in a variety of plant species. ME feeding of males of the B. dorsalis complex is known to enhance their mating competitiveness. Within B. dorsalis, recent studies show that Asian and African populations of B. dorsalis are sexually compatible, while populations of B. dorsalis and Bactrocera carambolae are relatively incompatible. The objectives of this study were to examine whether ME feeding by males affects mating compatibility between Asian and African populations of B. dorsalis and ME feeding reduces male mating incompatibility between B. dorsalis (Asian population) and B. carambolae. The data confirmed that Asian and African populations of B. dorsalis are sexually compatible for mating and showed that ME feeding only increased the number of matings. Though ME feeding also increased the number of matings of B. dorsalis (Asian population) and B. carambolae males but the sexual incompatibility between both species was not reduced by treatment with ME. These results conform to the efforts resolving the biological species limits among B. dorsalis complex and have implications for fruit fly control programs in fields and horticultural trade.
Resumo:
Eight polymorphic microsatellite loci were analysed in six population samples from four locations of the Australian endemic brown tiger prawn, Penaeus esculentus. Tests of Hardy-Weinberg equilibrium were generally in accord with expectations, with only one locus, in two samples, showing significant deviations. Three samples were taken in different years from the Exmouth Gulf. These showed no significant heterogeneity, and it was concluded that they were from a single panmictic population. A sample from Shark Bay, also on the west coast of Australia, showed barely detectable differentiation from Exmouth Gulf (F (ST) = 0 to 0.0014). A northeast sample from the Gulf of Carpentaria showed low (F (ST) = 0.008) but significant differentiation from Moreton Bay, on the east coast. However, Exmouth Gulf/Shark Bay samples were well differentiated from the Gulf of Carpentaria/Moreton Bay (F (ST) = 0.047-0.063). The data do not fit a simple isolation by distance model. It is postulated that the east-west differentiation largely reflects the isolation of east and west coast populations that occurred at the last glacial maximum when there was a land bridge between north-eastern Australia and New Guinea.
Resumo:
Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.
Resumo:
Background. Evidence of cognitive dysfunction in depressive and anxiety disorders is growing. However, the neuropsychological profile of young adults has received only little systematic investigation, although depressive and anxiety disorders are major public health problems for this age group. Available studies have typically failed to account for psychiatric comorbidity, and samples derived from population-based settings have also seldom been investigated. Burnout-related cognitive functioning has previously been investigated in only few studies, again all using clinical samples and wide age groups. Aims. Based on the information gained by conducting a comprehensive review, studies on cognitive impairment in depressive and anxiety disorders among young adults are rare. The present study examined cognitive functioning in young adults with a history of unipolar depressive or anxiety disorders in comparison to healthy peers, and associations of current burnout symptoms with cognitive functioning, in a population-based setting. The aim was also to determine whether cognitive deficits vary as a function of different disorder characteristics, such as severity, psychiatric comorbidity, age at onset, or the treatments received. Methods. Verbal and visual short-term memory, verbal long-term memory and learning, attention, psychomotor processing speed, verbal intelligence, and executive functioning were measured in a population-based sample of 21-35 year olds. Performance was compared firstly between participants with pure non-psychotic depression (n=68) and healthy peers (n=70), secondly between pure (n=69) and comorbid depression (n=57), and thirdly between participants with anxiety disorders (n=76) and healthy peers (n=71). The diagnostic procedure was based on the SCID interview. Fourthly, the associations of current burnout symptoms, measured with the Maslach Burnout Inventory General Survey, and neuropsychological test performance were investigated among working young adults (n=225). Results. Young adults with depressive or anxiety disorders, with or without psychiatric comorbidity, were not found to have major cognitive impairments when compared to healthy peers. Only mildly compromised verbal learning was found among depressed participants. Pure and comorbid depression groups did not differ in cognitive functioning, either. Among depressed participants, those who had received treatment showed more impaired verbal memory and executive functioning, and earlier onset corresponded with more impaired executive functioning. In anxiety disorders, psychotropic medication and low psychosocial functioning were associated with deficits in executive functioning, psychomotor processing speed, and visual short-term memory. Current burnout symptoms were associated with better performance in verbal working memory and verbal intelligence. However, lower examiner-rated social and occupational functioning was associated with problems in verbal attention, memory, and learning. Conclusions. Depression, anxiety disorders, or burnout symptoms may not be associated with major cognitive deficits among young adults derived from the general population. Even psychiatric comorbidity may not aggravate cognitive functioning in depressive or anxiety disorders among these young adults. However, treatment-seeking in depression was found to be associated with cognitive deficits, suggesting that these deficits relate to increased distress. Additionally, early-onset depression, found to be associated with executive dysfunction, may represent a more severe form of the disorder. In anxiety disorders, those with low symptom-related psychosocial functioning may have cognitive impairment. An association with self-reported burnout symptoms and cognitive deficits was not detected, but individuals with low social and occupational functioning may have impaired cognition.
Resumo:
Root-lesion nematode (Pratylenchus thornei) is a serious pathogen of wheat in many countries. The International Triticeae Mapping Initiative (ITMI) population of recombinant inbred lines (RILs) was assessed for resistance to P. thornei to determine the chromosome locations of the resistance genes. The ITMI population is derived from a cross between the resistant synthetic hexaploid wheat W-7984 and a susceptible bread wheat cultivar Opata 85. Two years of phenotypic data for resistance to P. thornei were obtained in replicated glasshouse trials. Quantitative trait locus (QTL) analysis was performed using available segregation and map data for 114 RILs. A QTL on chromosome 6DS showed consistent effects for reduced nematode numbers (partial resistance) across years and accounted for 11% and 23% of the phenotypic variation. A second QTL for P. thornei resistance on chromosome 2BS accounted for an additional 19% and 5%. Restriction fragment length polymorphism (RFLP) and simple sequence repeat (SSR) markers associated with the QTLs are physically located in regions rich in major genes at the distal ends of the short chromosome arms of 6D and 2B. SSR markers with potential for marker-assisted selection of P. thornei resistance effective in different genetic backgrounds have been identified.