857 resultados para Polymer Thermogravimetric Analysis
Resumo:
Excess intercalation of cationic surfactants into Na-montmorillonites (MMTs) was investigated in organically modified silicates (OMSs), synthesized with MMTs and octadecylammonium chloride (OAC) by systematically varying the surfactant loading level from 0.625 to 1, 1.25, 1.56, 2, and 2.5 with respect to the cation exchange capacity (CEC) of MMTs. Wide-angle X-ray diffraction and thermogravimetric analysis results indicated that the continuous increase of interlayer distances came from the entering of surfactants into the interlayer of MMTs. Excess surfactants were extracted with a Soxhlet apparatus, which showed two kinds of intercalation states of surfactants in the interlayer when the surfactant loading level was beyond the CEC. Fourier transform infrared spectroscopy and differential scanning calorimetry were used to explore the microstructures of OMSs. It was found that the surfactants arranged more orderly as the loading level increased and the excess surfactants piled up in the interlayer together with counterions, forming a sandwiched surfactant layer. On the basis of the results, the layer structures of OMSs and the mechanism by which the surfactants entered the interlayer were expounded: surfactant cations entered the interlayer through cation exchange reactions and were tightly attracted to the silicate platelet surfaces when the surfactant loading level was below the CEC;
Resumo:
We report on the preparation of luminescent silica mesoporous molecular sieves (MCM-48) activated by the europium complex Eu(DBM)(3) . 2H(2)O (where DBM = dibenzoylmethane), using a simple wet impregnation method. Different concentrations of Eu(DBM)(3) . 2H(2)O were introduced into the MCM-48 cubic structure, and the resulting samples were washed with ethanol for different times. UV-Vis absorption measurements and thermogravimetric analysis were used to estimate the amount of Eu complex that has been incorporated within the pores of the MCM-48 host. The various samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy, diffuse reflectance (DR) and fluorescence measurements. The results reveal that Eu complexes have been successfully introduced into the pores of MCM-48 without disrupting the structure. All the impregnated MCM-48 materials show the typical red luminescence of Eu3+ when excited with a UV lamp. Shifts of the absorption maxima were observed in the DR and fluorescence excitation spectra and will be discussed in relation with guest-host interactions between the organic complex and the silica matrix. The decay profiles of the europium luminescence in the different samples were also measured and discussed.
Resumo:
The complex fluoride LiBaF3 and LiBaF3:M(M = Eu, Ce) is solvothermally synthesized at 180 degreesC and characterized by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy. In the solvothermal process, the solvents, molar ratios of initial mixtures and reaction temperature play important roles in the formation of products. The excitation and emission spectra of the LiBaF3:M(M= Eu,Ce) have been measured by fluorescence spectrophotometer. In the LiBaF3: Eu emission spectra, there is one sharp line emission located at 360 nm arising from f --> f transition of Eu2+ in the host lattice, and typical doublet 5d-4f emission of Ce3+ in LiBaF3 powder is shown.
Resumo:
The complex fluoride LiBaF3 is solvothermally synthesized at 180degreesC and characterized by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy. In the solvothermal process, the solvents, mole ratios of initial mixtures and reaction temperature play important roles in the growth of the single crystal.
Resumo:
The complex fluorides KMgF3 and KZnF3 with Perovskite structures were solvothermally synthesised at 150-180degreesC and characterised by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy.
Resumo:
Complex fluorides KCoF3 and KNiF3 with perovskite structures were solvothermally synthesized at 120-180 C and characterized by means of X-ray powder diffraction, scanning electron microscopy. thermogravimetric analysis and infrared spectroscopy.
Resumo:
Single crystals of K(2)Ln(NO3)(5). 2H(2)O (KLnN) (Ln = La, Ce, Pr, Nd, Sm) were grown from aqueous solution. The thermogravimetric analysis and differential thermal analysis curves of KLnN demonstrate that the processes of dehydration, melting, irreversible phase transformation and decomposition of NO3- take place in sequence in the heating processes (except KCN). There are three stages in the decomposition of NO3- in KLnN (Ln = La, Nd, Sm) while two in KLnN (Ln = Ce, Pr). K(2)Ln(NO3)(5) is formed at about 225 degrees C by the reaction of KNO3 and Ln(NO3)(3). nH(2)O (Ln = La, Ce, Pr, Nd). (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel mixed-valence molybdenum(IV, VI) arsenate(III), Ni(H2NCH2CH2NH2)(3)[((MoO6)-O-IV)(Mo6O18)-O-VI((As3O3)-O-III)(2)]H2O, hydrothermally synthesized and characterized by single-crystal X-ray diffraction and thermogravimetric analysis. The polyanion cage derives from the Anderson structure, in which the central octahedron was filled up by molybdenum(IV) and it was capped on both sides by a novel As3O63- cyclo-triarsenate(III). The title compound had a high catalytic activity for the oxidation of benzaldehyde to benzoic acid using H2O2 as oxidant in a liquid-solid biphase system. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The complex fluorides LiYF4, KYF4, BaBeF4 and AYF(4)Eu(x) (A = Li, K) are hydrothermally synthesized at 140-240 degrees C and characterized by powder X-ray diffraction, thermogravimetric analysis, IR spectroscopy, scanning electron microscopy and luminescence measurements.
Resumo:
The complex fluorides, LiBaF3 and KMgF3; which are isostructural with perovskite phases, are hydrothermally synthesized at 120-240 degrees C and characterized by powder X-ray diffraction, thermogravimetric analysis, IR spectroscopy and scanning electron microscopy.
Resumo:
New copolyether sulfones containing 2,5-bis(4-oxo-benzylidene)-cyclopentanone moieties were prepared in the conventional literature manner by condensing the dipotassium salts of 2,5-bis(4-hydroxybenzylidene)cyclopentanone (I) and 2,2-bis(4-hydroxyphenyl)propane (Bisphenol A, III) with 4,4'-dichlorodiphenyl sulfone (II), or by condensing the dipotassium salts of I with chlorine-terminated Bisphenol A-4,4'-dichlorodiphenylsulfone copolymers (V). The resulting copolyether sulfones were confirmed by IR, viscometry, DSC measurements, thermooptical analysis (TOA), and thermogravimetric analysis (TGA).
Resumo:
In northern China, the loess-soil sequence of the last 2.6 Ma, the Hipparion Red-Earth of eolian origin and recently reported Pliocene-Miocene loess-soil sequence provide a near continuous continental eolian record of climatic history for the past 22.0 Ma. This work aims to investigate the composition and structure of clay minerals contained in deposits, and to explore their implications for environmental evolutions over the last 22.0 Ma. Clay minerals, which were extracted from eolian samples collected at Xifeng (0-6.2 MaBP) and Qinan (6.2-22.0 MaBP) sections, were analyzed qualitatively and semi-quantitatively by using X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TG) and chemical analysis. The main conclusions are as follows: Over the last 22.0 Ma, the clay mineral assemblage among Quaternary loess-soils, Hipparion Red-Earth, and Miocene loess-soils shows similar components, mainly consisting of illite (55-80%), kaolinite (7-20%), chlorite (4-13%), smectite (2-23%) as results calculated by comparing major peak areas. There are no obvious differences in both types and amounts of clay minerals between loess and interbedded soils, suggesting that overwhelming part of the clay minerals is derived from the source. According to the components of clay minerals, the whole sequence of eolian deposits in the Loess Plateau can be divided into ten clay mineral assemblage zones over the last 22.0 Ma, whose corresponding ages are: 22.0-21.0 MaBP, 21.0-18.0 MaBP, 18-16.2 MaBP, 16.2-13.0 MaBP, 13.0-10.0 MaBP, 10.0-5.5 MaBP, 5.5-4.4 MaBP, 4.4-2.8 MaBP, 2.8-1.0 MaBP, 1.0-0 MaBP, respectively. This may imply that dust supply changed at least nine times over the past 22.0 Ma. The loess illite has a better crystaliinity, higher value of the FWHM and IC, than the interbedd soils. Previous studies indicated that irregular mixed layer minerals could form under relatively warm and humid conditions (Han, 1982). According to the general distribution of clay minerals of zonal soil (Chamley, 1989), the clay mineral assemblage of eolian deposits in Xifeng and Qinan sections is typical of temperature-humid and warm-subarid environment. Therefore, our results indicate climatic environment in Loess Plateau did not change remarkably since 22.0 Ma, and fluctuated between temperature-humid and warm-subarid climate. 4. The illite generally presents poorer crystaliinity during the period of 22.0 to 2.8 MaBP than in the last 2.8 Ma BP, especially at the intervals of 3.5-4.5 Ma BP, 14.0-17.0 MaBP and 20.0-22.0 Ma BP, which indicates that the weathering intensity was stronger in Neogene than in Quaternary. 5. The relatively low ice volume and high global temperature may be responsible for the strange weathering intensity during the interval of the 3.5-4.5 Ma BP, 14.0-17.0 Ma BP and 20.0-22.0 Ma BP.
Resumo:
The properties and formation of nanotubes have been extensively studied, but very few deal with the catalytic production mechanism of nanotubes. Two different techniques, thermogravimetric analysis and UV-Raman, have been applied to analyse the carbon deposition by catalysed decomposition of acetylene over an iron-based catalyst. The nature of the produced carbon materials depends on reaction temperature. Also, TEM allows identification of carbon nanotubes, encapsulated particles, and other nanostructures, while UV-Raman confirms its graphitic and graphite-like nature. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The heat capacities of crystalline and liquid n-hexatriacontane were measured with an automatic adiabatic calorimeter over the temperature range of 80-370 K. Two solid-to-solid phase transitions at the temperatures of 345.397 and 346.836 K, and a fusion at the temperature of 348.959 K have been observed. The enthalpies and entropies of these phase transitions as well as the chemical purity of the substance were determined on the basis of the heat capacity measurements. Thermal decomposition temperatures of the compound were measured by thermogravimetric analysis. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The research work included in this thesis examines the synthesis, characterization and chromatographic evaluation of novel bonded silica stationary phases. Innovative methods of preparation of silica hydride intermediates and octadecylsilica using a “green chemistry” approach eliminate the use of toxic organic solvents and exploit the solvating power and enhanced diffusivity of supercritical carbon dioxide to produce phases with a surface coverage of bonded ligands which is comparable to, or exceeds, that achieved using traditional organic solvent-based methods. A new stationary phase is also discussed which displays chromatographic selectivity based on molecular recognition. Chapter 1 introduces the chemistry of silica stationary phases, the retention mechanisms and theories on which reversed-phase liquid chromatography and hydrophilic interaction chromatograpy are based, the art and science of achieving a well packed liquid chromatography column, the properties of supercritical carbon dioxide and molecular recognition chemistry. Chapter 2 compares the properties of silica hydride materials prepared using supercritical carbon dioxide as the reaction medium with those synthesized in an organic solvent. A higher coverage of hydride groups on the silica surface is seen when a monofunctional silane is reacted in supercritical carbon dioxide while trifunctional silanes result in a phase which exhibits different properties depending on the reaction medium used. The differing chromatographic behaviour of these silica hydride materials prepared using supercritical carbon dioxide and using organic solvent are explored in chapter 3. Chapter 4 focusses on the preparation of octadecylsilica using mono-, di- and trifunctional alkoxysilanes in supercritical carbon dioxide and in anhydrous toluene. The surface coverage of octadecyl groups, as calculated using thermogravimetric analysis and elemental analysis, is highest when a trifunctional alkoxysilane is reacted with silica in supercritical carbon dioxide. A novel silica stationary phase is discussed in chapter 5 which displays selectivity for analytes based on their hydrogen bonding capabilities. The phase is also highly selective for barbituric acid and may have a future application in the solid phase extraction of barbiturates from biological samples.