971 resultados para Pocket gophers
Resumo:
设计并实现了基于Pocket PC的互联网遥操作机器人足球比赛系统,按照需求分析、系统设计与实现,以及实验结果的思路描述了整个过程,建立了无线网络环境下遥操作理论研究的实验平台,并以此为基础对遥操作机器人足球背景下的操作者策略与自主智能的融合作了一些探索。
Resumo:
Wydział Chemii
Resumo:
The chemical interplay of nitrogen oxides (NO's) with hemoglobin (Hb) has attracted considerable recent attention because of its potential significance in the mechanism of NO-related vasoactivity regulated by Hb. An important theme of this interplay-redox coupling in adducts of heme iron and NO's-has sparked renewed interest in fundamental studies of FeNO(x) coordination complexes. In this Article, we report combined UV-vis and comprehensive electron paramagnetic resonance (EPR) spectroscopic studies that address intriguing questions raised in recent studies of the structure and affinity of the nitrite ligand in complexes with Fe(III) in methemoglobin (metHb). EPR spectra of metHb/NO(2)(-) are found to exhibit a characteristic doubling in their sharper spectral features. Comparative EPR measurements at X- and S-band frequencies, and in D(2)O versus H(2)O, argue against the assignment of this splitting as hyperfine structure. Correlated changes in the EPR spectra with pH enable complete assignment of the spectrum as deriving from the overlap of two low-spin species with g values of 3.018, 2.122, 1.45 and 2.870, 2.304, 1.45 (values for samples at 20 K and pH 7.4 in phosphate-buffered saline). These g values are typical of g values found for other heme proteins with N-coordinated ligands in the binding pocket and are thus suggestive of N-nitro versus O-nitrito coordination. The positions and shapes of the spectral lines vary only slightly with temperature until motional averaging ensues at approximately 150 K. The pattern of motional averaging in the variable-temperature EPR spectra and EPR studies of Fe(III)NO(2)(-)/Fe(II)NO hybrids suggest that one of two species is present in both of the alpha and beta subunits, while the other is exclusive to the beta subunit. Our results also reconfirm that the affinity of nitrite for metHb is of millimolar magnitude, thereby making a direct role for nitrite in physiological hypoxic vasodilation difficult to justify.
Resumo:
The research and development costs of 93 randomly selected new chemical entities (NCEs) were obtained from a survey of 12 U.S.-owned pharmaceutical firms. These data were used to estimate the pre-tax average cost of new drug development. The costs of abandoned NCEs were linked to the costs of NCEs that obtained marketing approval. For base case parameter values, the estimated out-of-pocket cost per approved NCE is $114 million (1987 dollars). Capitalizing out-of-pocket costs to the point of marketing approval at a 9% discount rate yielded an average cost estimate of $231 million (1987 dollars).
Resumo:
The costs of developing the types of new drugs that have been pursued by traditional pharmaceutical firms have been estimated in a number of studies. However, similar analyses have not been published on the costs of developing the types of molecules on which biotech firms have focused. This study represents a first attempt to get a sense for the magnitude of the R&D costs associated with the discovery and development of new therapeutic biopharmaceuticals (specifically, recombinant proteins and monoclonal antibodies [mAbs]). We utilize drug-specific data on cash outlays, development times, and success in obtaining regulatory marketing approval to estimate the average pre-tax R&D resource cost for biopharmaceuticals up to the point of initial US marketing approval (in year 2005 dollars). We found average out-of-pocket (cash outlay) cost estimates per approved biopharmaceutical of $198 million, $361 million, and $559 million for the preclinical period, the clinical period, and in total, respectively. Including the time costs associated with biopharmaceutical R&D, we found average capitalized cost estimates per approved biopharmaceutical of $615 million, $626 million, and $1241 million for the preclinical period, the clinical period, and in total, respectively. Adjusting previously published estimates of R&D costs for traditional pharmaceutical firms by using past growth rates for pharmaceutical company costs to correspond to the more recent period to which our biopharmaceutical data apply, we found that total out-of-pocket cost per approved biopharmaceutical was somewhat lower than for the pharmaceutical company data ($559 million vs $672 million). However, estimated total capitalized cost per approved new molecule was nearly the same for biopharmaceuticals as for the adjusted pharmaceutical company data ($1241 million versus $1318 million). The results should be viewed with some caution for now given a limited number of biopharmaceutical molecules with data on cash outlays, different therapeutic class distributions for biopharmaceuticals and for pharmaceutical company drugs, and uncertainty about whether recent growth rates in pharmaceutical company costs are different from immediate past growth rates. Copyright © 2007 John Wiley & Sons, Ltd.
Resumo:
The research and development costs of 68 randomly selected new drugs were obtained from a survey of 10 pharmaceutical firms. These data were used to estimate the average pre-tax cost of new drug development. The costs of compounds abandoned during testing were linked to the costs of compounds that obtained marketing approval. The estimated average out-of-pocket cost per new drug is 403 million US dollars (2000 dollars). Capitalizing out-of-pocket costs to the point of marketing approval at a real discount rate of 11% yields a total pre-approval cost estimate of 802 million US dollars (2000 dollars). When compared to the results of an earlier study with a similar methodology, total capitalized costs were shown to have increased at an annual rate of 7.4% above general price inflation.
Resumo:
Adrenergic receptors are prototypic models for the study of the relations between structure and function of G protein-coupled receptors. Each receptor is encoded by a distinct gene. These receptors are integral membrane proteins with several striking structural features. They consist of a single subunit containing seven stretches of 20-28 hydrophobic amino acids that represent potential membrane-spanning alpha-helixes. Many of these receptors share considerable amino acid sequence homology, particularly in the transmembrane domains. All of these macromolecules share other similarities that include one or more potential sites of extracellular N-linked glycosylation near the amino terminus and several potential sites of regulatory phosphorylation that are located intracellularly. By using a variety of techniques, it has been demonstrated that various regions of the receptor molecules are critical for different receptor functions. The seven transmembrane regions of the receptors appear to form a ligand-binding pocket. Cysteine residues in the extracellular domains may stabilize the ligand-binding pocket by participating in disulfide bonds. The cytoplasmic domains contain regions capable of interacting with G proteins and various kinases and are therefore important in such processes as signal transduction, receptor-G protein coupling, receptor sequestration, and down-regulation. Finally, regions of these macromolecules may undergo posttranslational modifications important in the regulation of receptor function. Our understanding of these complex relations is constantly evolving and much work remains to be done. Greater understanding of the basic mechanisms involved in G protein-coupled, receptor-mediated signal transduction may provide leads into the nature of certain pathophysiological states.
Resumo:
The beta 1- and beta 2-adrenergic receptors are two structurally related, but pharmacologically distinguishable, receptor subtypes, both of which activate adenylyl cyclase in a catecholamine-dependent manner through the guanine nucleotide-binding regulatory protein Gs. The receptors are approximately 50% identical in amino acid sequence and each is characterized by the presence of seven putative transmembrane domains. To elucidate the structural basis for the pharmacological distinctions between these two receptor subtypes, we constructed a series of chimeric beta 1/beta 2-adrenergic receptor genes and expressed them by injection of RNA into Xenopus laevis oocytes. The pharmacological properties of the expressed chimeric receptor proteins were assessed by radioligand binding and adenylyl cyclase assays utilizing subtype-selective agonists and antagonists. Our data indicate that transmembrane region IV is largely responsible for determining beta 1 vs. beta 2 properties with respect to agonist binding (relative affinities for epinephrine and norepinephrine). Transmembrane regions VI and VII play an important role in determining binding of beta 1 vs. beta 2 selective antagonists. However, a number of the other transmembrane regions also contribute, to a lesser extent, to the determination of beta-adrenergic receptor subtype specificity for agonists and antagonists. Thus, several of the membrane-spanning regions appear to be involved in the determination of receptor subtype specificity, presumably by formation of a ligand-binding pocket, with determinants for agonist and antagonist binding being distinguishable.
Resumo:
Staphylococcal protein A (SpA) is an important virulence factor from Staphylococcus aureus responsible for the bacterium's evasion of the host immune system. SpA includes five small three-helix-bundle domains that can each bind with high affinity to many host proteins such as antibodies. The interaction between a SpA domain and the Fc fragment of IgG was partially elucidated previously in the crystal structure 1FC2. Although informative, the previous structure was not properly folded and left many substantial questions unanswered, such as a detailed description of the tertiary structure of SpA domains in complex with Fc and the structural changes that take place upon binding. Here we report the 2.3-Å structure of a fully folded SpA domain in complex with Fc. Our structure indicates that there are extensive structural rearrangements necessary for binding Fc, including a general reduction in SpA conformational heterogeneity, freezing out of polyrotameric interfacial residues, and displacement of a SpA side chain by an Fc side chain in a molecular-recognition pocket. Such a loss of conformational heterogeneity upon formation of the protein-protein interface may occur when SpA binds its multiple binding partners. Suppression of conformational heterogeneity may be an important structural paradigm in functionally plastic proteins.
Resumo:
P-glycoprotein (P-gp) is one of the best-known mediators of drug efflux-based multidrug resistance in many cancers. This validated therapeutic target is a prototypic, plasma membrane resident ATPBinding Cassette transporter that pumps xenobiotic compounds out of cells. The large, polyspecific drug-binding pocket of P-gp recognizes a variety of structurally unrelated compounds. The transport of these drugs across the membrane is coincident with changes in the size and shape of this pocket during the course of the transport cycle. Here, we present the crystal structures of three inward-facing conformations of mouse P-gp derived from two different crystal forms. One structure has a nanobody bound to the C-terminal side of the first nucleotide-binding domain. This nanobody strongly inhibits the ATP hydrolysis activity of mouse Pgp by hindering the formation of a dimeric complex between the ATP-binding domains, which is essential for nucleotide hydrolysis. Together, these inward-facing conformational snapshots of P-gp demonstrate a range of flexibility exhibited by this transporter, which is likely an essential feature for the binding and transport of large, diverse substrates. The nanobody-bound structure also reveals a unique epitope on P-gp.
Resumo:
As the trend toward further miniaturisation of pocket and handheld consumer electronic products continues apace, the requirements for even smaller solder joints will continue. With further reductions in the size of solder joints, the reliability of solder joints will become more and more critical to the long-term performance of electronic products. Solder joints play an important role in electronics packaging, serving both as electrical interconnections between the components and the board, and as mechanical support for components. With world-wide legislation for the removal/reduction of lead and other hazardous materials from electrical and electronic products, the electronics manufacturing industry has been faced with an urgent search for new lead-free solder alloy systems and other solder alternatives. In order to achieve high volume, low cost production, the stencil printing process and subsequent wafer bumping of solder paste has become indispensable. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance. The printing of ICAs and lead-free solder pastes through the very small stencil apertures required for flip chip applications was expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit pads. Paste release from the stencil apertures is dependent on the interaction between the solder paste, surface pad and aperture wall; including its shape. At these very narrow aperture sizes the paste rheology becomes crucial for consistent paste withdrawal because for smaller paste volumes surface tension effects become dominant over viscous flow. Successful aperture filling and release will greatly depend on the rheology of the paste material. Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall- slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensuring successful paste release after the printing process. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of surface roughness on the paste viscosity was investigated. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall slip as was expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates, inducing structural breakdown of the paste. Most importantly, the study also demonstrated on how the wall slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour
Resumo:
Kinesins are molecular motors that transport intracellular cargos along microtubules (MTs) and influence the organization and dynamics of the MT cytoskeleton. Their force-generating functions arise from conformational changes in their motor domain as ATP is bound and hydrolyzed, and products are released. In the budding yeast Saccharomyces cerevisiae, the Kar3 kinesin forms heterodimers with one of two non-catalytic kinesin-like proteins, Cik1 and Vik1, which lack the ability to bind ATP, and yet they retain the capacity to bind MTs. Cik1 and Vik1 also influence and respond to the MT-binding and nucleotide states of Kar3, and differentially regulate the functions of Kar3 during yeast mating and mitosis. The mechanism by which Kar3/Cik1 and Kar3/Vik1 dimers operate remains unknown, but has important implications for understanding mechanical coordination between subunits of motor complexes that traverse cytoskeletal tracks. In this study, we show that the opportunistic human fungal pathogen Candida albicans (Ca) harbors a single version of this unique form of heterodimeric kinesin and we present the first in vitro characterization of this motor. Like its budding yeast counterpart, the Vik1-like subunit binds directly to MTs and strengthens the MT-binding affinity of the heterodimer. However, in contrast to ScKar3/Cik1 and ScKar3/Vik1, CaKar3/Vik1 exhibits weaker overall MT-binding affinity and lower ATPase activity. Preliminary investigations using a multiple motor motility assay indicate CaKar3/Vik1 may not be motile. Using a maltose binding protein tagging system, we determined the X-ray crystal structure of the CaKar3 motor domain and observed notable differences in its nucleotide-binding pocket relative to ScKar3 that appear to represent a previously unobserved state of the active site. Together, these studies broaden our knowledge of novel kinesin motor assemblies and shed new light on structurally dynamic regions of Kar3/Vik1-like motor complexes that help mediate mechanical coordination of its subunits.
Resumo:
Kinesins are motor proteins that convert chemical energy from ATP hydrolysis into mechanical energy used to generate force along microtubules, transporting organelles, vesicles, and proteins within the cell. Kar3 kinesins are microtubule minus-end-directed motors with pleiotropic functions in mating and mitosis of budding and fission yeast. In Saccharomyces cerevisiae, Kar3 is multifunctionalized by two non-catalytic companion proteins, Vik1 and Cik1. A Kar3-like kinesin and a single Vik1/Cik1 ortholog are also expressed by the filamentous fungus Ashbya gossypii, which exhibits different nuclear movement challenges and unique microtubule dynamics from its yeast relatives. We hypothesized that these differences in A. gossypii physiology could translate into interesting and novel differences in its versions of Kar3 and Vik1/Cik1. Presented here is a structural and functional analysis of recombinantly expressed and purified forms of these motor proteins. Compared to the previously published S. cerevisiae Kar3 motor domain structure (ScKar3MD), AgKar3MD displays differences in the conformation of the ATPase pocket. Perhaps it is not surprising then that we observed the maximal microtubule-stimulated ATPase rate (kcat) of AgKar3MD to be approximately 3-fold slower than ScKar3MD, and that the affinity of AgKar3MD for microtubules (Kd,MT) was lower than ScKar3MD. This may suggest that elements that compose the ATPase pocket and that participate in conformational changes required for efficient ATP hydrolysis or products release work differently for AgKar3 and ScKar3. There are also subtle structural differences in the disposition of the secondary structural elements in the small lobe (B1a, B1b, and B1c) at the edge of the motor domain of AgKar3 that may reflect the enhanced microtubule-depolymerization activity that we observed for this motor, or they could relate to its interactions with a different regulatory companion protein than its budding yeast counterpart. Although we were unable to gain experimentally determined high-resolution information of AgVik1, the results of Phyre2-based bioinformatics analyses may provide a structural explanation for the limited microtubule-binding activity we observed. These and other fundamental differences in AgKar3/Vik1 could explain divergent functionalities from the ScKar3/Vik1 and ScKar3/Cik1 motor assemblies.
Resumo:
The coronavirus main protease, Mpro, is considered to be a major target for drugs suitable for combating coronavirus infections including severe acute respiratory syndrome (SARS). An HPLC-based screening of electrophilic compounds that was performed to identify potential Mpro inhibitors revealed etacrynic acid tert-butylamide (6a) as an effective nonpeptidic inhibitor. Docking studies suggested a binding mode in which the phenyl ring acts as a spacer bridging the inhibitor's activated double bond and its hydrophobic tert-butyl moiety. The latter is supposed to fit into the S4 pocket of the target protease. Furthermore, these studies revealed etacrynic acid amide (6b) as a promising lead for nonpeptidic active-site-directed Mpro inhibitors. In a fluorimetric enzyme assay using a novel fluorescence resonance energy transfer (FRET) pair labeled substrate, compound 6b showed a Ki value of 35.3 M. Since the novel lead compound does not target the S1', S1, and S2 subsites of the enzyme's substrate-binding pockets, there is room for improvement that underlines the lead character of compound 6b.
Resumo:
We describe an epitope on the platelet integrin, GPIIb/IIIa, identified by the monoclonal antibody, 4F8, which is attenuated by small-molecule GPIIb/IIIa ligands. 4F8 did not bind to the ligand binding pocket as it did not compete with a radiolabelled antagonist, H-3-SC-52012. This indicates that the 4F8 epitope behaves as a ligand-attenuated binding site (LABS). Ligand-induced attenuation of 4178 was an active process as it was prevented by pretreating platelets with cytochalasin D and reduced by prostaglandin E-1 or inhibition of protein kinase C. Disappearance of the epitope was required for full platelet activation as 4F8 prevented platelet aggregation without inhibiting fibrinogen binding. These results suggest a model where disappearance of the 4F8 epitope is a secondary event required for full