979 resultados para Piecewise linear techniques


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The municipal management in any country of the globe requires planning and allocation of resources evenly. In Brazil, the Law of Budgetary Guidelines (LDO) guides municipal managers toward that balance. This research develops a model that seeks to find the balance of the allocation of public resources in Brazilian municipalities, considering the LDO as a parameter. For this using statistical techniques and multicriteria analysis as a first step in order to define allocation strategies, based on the technical aspects arising from the municipal manager. In a second step, presented in linear programming based optimization where the objective function is derived from the preference of the results of the manager and his staff. The statistical representation is presented to support multicriteria development in the definition of replacement rates through time series. The multicriteria analysis was structured by defining the criteria, alternatives and the application of UTASTAR methods to calculate replacement rates. After these initial settings, an application of linear programming was developed to find the optimal allocation of enforcement resources of the municipal budget. Data from the budget of a municipality in southwestern Paraná were studied in the application of the model and analysis of results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural crops can be damaged by funguses, insects, worms and other organisms that cause diseases and decrease the yield of production. The effect of these damaging agents can be reduced using pesticides. Among them, triazole compounds are effective substances against fungus; for example, Oidium. Nevertheless, it has been detected that the residues of these fungicides in foods as well as in derivate products can affect the health of the consumers. Therefore, the European Union has established several regulations fixing the maximum residue of pesticide levels in a wide range of foods trying to assure the consumer safety. Hence, it is very important to develop adequate methods to determine these pesticide compounds. In most cases, gas or liquid chromatographic (GC, LC) separations are used in the analysis of the samples. But firstly, it is necessary to use proper sample treatments in order to preconcentrate and isolate the target analytes. To reach this aim, microextraction techniques are very effective tools; because allow to do both preconcentration and extraction of the analytes in one simple step that considerably reduces the source of errors. With these objectives, two remarkable techniques have been widely used during the last years: solid phase microextraction (SPME) and liquid phase microextraction (LPME) with its different options. Both techniques that avoid the use or reduce the amount of toxic solvents are convenient coupled to chromatographic equipments providing good quantitative results in a wide number of matrices and compounds. In this work simple and reliable methods have been developed using SPME and ultrasound assisted emulsification microextraction (USAEME) coupled to GC or LC for triazole fungicides determination. The proposed methods allow confidently determine triazole concentrations of μg L‐1 order in different fruit samples. Chemometric tools have been used to accomplish successful determinations. Firstly, in the selection and optimization of the variables involved in the microextraction processes; and secondly, to overcome the problems related to the overlapping peaks. Different fractional factorial designs have been used for the screening of the experimental variables; and central composite designs have been carried out to get the best experimental conditions. Trying to solve the overlapping peak problems multivariate calibration methods have been used. Parallel Factor Analysis 2 (PARAFAC2), Multivariate Curve Resolution (MCR) and Parallel Factor Analysis with Linear Dependencies (PARALIND) have been proposed, the adequate algorithms have been used according to data characteristics, and the results have been compared. Because its occurrence in Basque Country and its relevance in the production of cider and txakoli regional wines the grape and apple samples were selected. These crops are often treated with triazole compounds trying to solve the problems caused by the funguses. The peel and pulp from grape and apple, their juices and some commercial products such as musts, juice and cider have been analysed showing the adequacy of the developed methods for the triazole determination in this kind of fruit samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new), and respiratory rate predictor RRP) with three main components of cow’s milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p-value < 0.001 and R2 (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nesta dissertação estudámos as séries temporais que representam a complexa dinâmica do comportamento. Demos especial atenção às técnicas de dinâmica não linear. As técnicas fornecem-nos uma quantidade de índices quantitativos que servem para descrever as propriedades dinâmicas do sistema. Estes índices têm sido intensivamente usados nos últimos anos em aplicações práticas em Psicologia. Estudámos alguns conceitos básicos de dinâmica não linear, as características dos sistemas caóticos e algumas grandezas que caracterizam os sistemas dinâmicos, que incluem a dimensão fractal, que indica a complexidade de informação contida na série temporal, os expoentes de Lyapunov, que indicam a taxa com que pontos arbitrariamente próximos no espaço de fases da representação do espaço dinâmico, divergem ao longo do tempo, ou a entropia aproximada, que mede o grau de imprevisibilidade de uma série temporal. Esta informação pode então ser usada para compreender, e possivelmente prever, o comportamento. ABSTRACT: ln this thesis we studied the time series that represent the complex dynamic behavior. We focused on techniques of nonlinear dynamics. The techniques provide us a number of quantitative indices used to describe the dynamic properties of the system. These indices have been extensively used in recent years in practical applications in psychology. We studied some basic concepts of nonlinear dynamics, the characteristics of chaotic systems and some quantities that characterize the dynamic systems, including fractal dimension, indicating the complexity of information in the series, the Lyapunov exponents, which indicate the rate at that arbitrarily dose points in phase space representation of a dynamic, vary over time, or the approximate entropy, which measures the degree of unpredictability of a series. This information can then be used to understand and possibly predict the behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with optimization techniques and modeling of vehicular networks. Thanks to the models realized with the integer linear programming (ILP) and the heuristic ones, it was possible to study the performances in 5G networks for the vehicular. Thanks to Software-defined networking (SDN) and Network functions virtualization (NFV) paradigms it was possible to study the performances of different classes of service, such as the Ultra Reliable Low Latency Communications (URLLC) class and enhanced Mobile BroadBand (eMBB) class, and how the functional split can have positive effects on network resource management. Two different protection techniques have been studied: Shared Path Protection (SPP) and Dedicated Path Protection (DPP). Thanks to these different protections, it is possible to achieve different network reliability requirements, according to the needs of the end user. Finally, thanks to a simulator developed in Python, it was possible to study the dynamic allocation of resources in a 5G metro network. Through different provisioning algorithms and different dynamic resource management techniques, useful results have been obtained for understanding the needs in the vehicular networks that will exploit 5G. Finally, two models are shown for reconfiguring backup resources when using shared resource protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of ancient, undeciphered scripts presents unique challenges, that depend both on the nature of the problem and on the peculiarities of each writing system. In this thesis, I present two computational approaches that are tailored to two different tasks and writing systems. The first of these methods is aimed at the decipherment of the Linear A afraction signs, in order to discover their numerical values. This is achieved with a combination of constraint programming, ad-hoc metrics and paleographic considerations. The second main contribution of this thesis regards the creation of an unsupervised deep learning model which uses drawings of signs from ancient writing system to learn to distinguish different graphemes in the vector space. This system, which is based on techniques used in the field of computer vision, is adapted to the study of ancient writing systems by incorporating information about sequences in the model, mirroring what is often done in natural language processing. In order to develop this model, the Cypriot Greek Syllabary is used as a target, since this is a deciphered writing system. Finally, this unsupervised model is adapted to the undeciphered Cypro-Minoan and it is used to answer open questions about this script. In particular, by reconstructing multiple allographs that are not agreed upon by paleographers, it supports the idea that Cypro-Minoan is a single script and not a collection of three script like it was proposed in the literature. These results on two different tasks shows that computational methods can be applied to undeciphered scripts, despite the relatively low amount of available data, paving the way for further advancement in paleography using these methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imaging technologies are widely used in application fields such as natural sciences, engineering, medicine, and life sciences. A broad class of imaging problems reduces to solve ill-posed inverse problems (IPs). Traditional strategies to solve these ill-posed IPs rely on variational regularization methods, which are based on minimization of suitable energies, and make use of knowledge about the image formation model (forward operator) and prior knowledge on the solution, but lack in incorporating knowledge directly from data. On the other hand, the more recent learned approaches can easily learn the intricate statistics of images depending on a large set of data, but do not have a systematic method for incorporating prior knowledge about the image formation model. The main purpose of this thesis is to discuss data-driven image reconstruction methods which combine the benefits of these two different reconstruction strategies for the solution of highly nonlinear ill-posed inverse problems. Mathematical formulation and numerical approaches for image IPs, including linear as well as strongly nonlinear problems are described. More specifically we address the Electrical impedance Tomography (EIT) reconstruction problem by unrolling the regularized Gauss-Newton method and integrating the regularization learned by a data-adaptive neural network. Furthermore we investigate the solution of non-linear ill-posed IPs introducing a deep-PnP framework that integrates the graph convolutional denoiser into the proximal Gauss-Newton method with a practical application to the EIT, a recently introduced promising imaging technique. Efficient algorithms are then applied to the solution of the limited electrods problem in EIT, combining compressive sensing techniques and deep learning strategies. Finally, a transformer-based neural network architecture is adapted to restore the noisy solution of the Computed Tomography problem recovered using the filtered back-projection method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, vehicle acoustics have gained significant importance in new car development: increasingly advanced infotainment systems for spatial audio and sound enhancement algorithms have become the norm in modern vehicles. In the past, car manufacturers had to build numerous prototypes to study the sound behaviour inside the car cabin or the effect of new algorithms under development. Nowadays, advanced simulation techniques can reduce development costs and time. In this work, after selecting the reference test vehicle, a modern luxury sedan equipped with a high-end sound system, two independent tools were developed: a simulation tool created in the Comsol Multiphysics environment and an auralization tool developed in the Cycling ‘74 MAX environment. The simulation tool can calculate the impulse response and acoustic spectrum at a specific position inside the cockpit. Its input data are the vehicle’s geometry, acoustic absorption parameters of materials, the acoustic characteristics and position of loudspeakers, and the type and position of virtual microphones (or microphone arrays). The simulation tool can also provide binaural impulse responses thanks to Head Related Transfer Functions (HRTFs) and an innovative algorithm able to compute the HRTF at any distance and angle from the head. Impulse responses from simulations or acoustic measurements inside the car cabin are processed and fed into the auralization tool, enabling real-time interaction by applying filters, changing the channels gain or displaying the acoustic spectrum. Since the acoustic simulation of a vehicle involves multiple topics, the focus of this work has not only been the development of two tools but also the study and application of new techniques for acoustic characterization of the materials that compose the cockpit and the loudspeaker simulation. Specifically, three different methods have been applied for material characterization through the use of a pressure-velocity probe, a Laser Doppler Vibrometer (LDV), and a microphone array.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Privacy issues and data scarcity in PET field call for efficient methods to expand datasets via synthetic generation of new data that cannot be traced back to real patients and that are also realistic. In this thesis, machine learning techniques were applied to 1001 amyloid-beta PET images, which had undergone a diagnosis of Alzheimer’s disease: the evaluations were 540 positive, 457 negative and 4 unknown. Isomap algorithm was used as a manifold learning method to reduce the dimensions of the PET dataset; a numerical scale-free interpolation method was applied to invert the dimensionality reduction map. The interpolant was tested on the PET images via LOOCV, where the removed images were compared with the reconstructed ones with the mean SSIM index (MSSIM = 0.76 ± 0.06). The effectiveness of this measure is questioned, since it indicated slightly higher performance for a method of comparison using PCA (MSSIM = 0.79 ± 0.06), which gave clearly poor quality reconstructed images with respect to those recovered by the numerical inverse mapping. Ten synthetic PET images were generated and, after having been mixed with ten originals, were sent to a team of clinicians for the visual assessment of their realism; no significant agreements were found either between clinicians and the true image labels or among the clinicians, meaning that original and synthetic images were indistinguishable. The future perspective of this thesis points to the improvement of the amyloid-beta PET research field by increasing available data, overcoming the constraints of data acquisition and privacy issues. Potential improvements can be achieved via refinements of the manifold learning and the inverse mapping stages during the PET image analysis, by exploring different combinations in the choice of algorithm parameters and by applying other non-linear dimensionality reduction algorithms. A final prospect of this work is the search for new methods to assess image reconstruction quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantification of dermal exposure to pesticides in rural workers, used in risk assessment, can be performed with different techniques such as patches or whole body evaluation. However, the wide variety of methods can jeopardize the process by producing disparate results, depending on the principles in sample collection. A critical review was thus performed on the main techniques for quantifying dermal exposure, calling attention to this issue and the need to establish a single methodology for quantification of dermal exposure in rural workers. Such harmonization of different techniques should help achieve safer and healthier working conditions. Techniques that can provide reliable exposure data are an essential first step towards avoiding harm to workers' health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of simulated microwave disinfection (SMD) on the linear dimensional changes, hardness and impact strength of acrylic resins under different polymerization cycles. Metal dies with referential points were embedded in flasks with dental stone. Samples of Classico and Vipi acrylic resins were made following the manufacturers' recommendations. The assessed polymerization cycles were: A-- water bath at 74ºC for 9 h; B-- water bath at 74ºC for 8 h and temperature increased to 100ºC for 1 h; C-- water bath at 74ºC for 2 h and temperature increased to 100ºC for 1 h;; and D-- water bath at 120ºC and pressure of 60 pounds. Linear dimensional distances in length and width were measured after SMD and water storage at 37ºC for 7 and 30 days using an optical microscope. SMD was carried out with the samples immersed in 150 mL of water in an oven (650 W for 3 min). A load of 25 gf for 10 sec was used in the hardness test. Charpy impact test was performed with 40 kpcm. Data were submitted to ANOVA and Tukey's test (5%). The Classico resin was dimensionally steady in length in the A and D cycles for all periods, while the Vipi resin was steady in the A, B and C cycles for all periods. The Classico resin was dimensionally steady in width in the C and D cycles for all periods, and the Vipi resin was steady in all cycles and periods. The hardness values for Classico resin were steady in all cycles and periods, while the Vipi resin was steady only in the C cycle for all periods. Impact strength values for Classico resin were steady in the A, C and D cycles for all periods, while Vipi resin was steady in all cycles and periods. SMD promoted different effects on the linear dimensional changes, hardness and impact strength of acrylic resins submitted to different polymerization cycles when after SMD and water storage were considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of simulated microwave disinfection (SMD) on the linear dimensional changes, hardness and impact strength of acrylic resins under different polymerization cycles. Metal dies with referential points were embedded in flasks with dental stone. Samples of Classico and Vipi acrylic resins were made following the manufacturers' recommendations. The assessed polymerization cycles were: A) water bath at 74 ºC for 9 h; B) water bath at 74 ºC for 8 h and temperature increased to 100 ºC for 1 h; C) water bath at 74 ºC for 2 h and temperature increased to 100 ºC for 1 h; and D) water bath at 120 ºC and pressure of 60 pounds. Linear dimensional distances in length and width were measured after SMD and water storage at 37 ºC for 7 and 30 days using an optical microscope. SMD was carried out with the samples immersed in 150 mL of water in an oven (650 W for 3 min). A load of 25 gf for 10 s was used in the hardness test. Charpy impact test was performed with 40 kpcm. Data were submitted to ANOVA and Tukey's test (5%). The Classico resin was dimensionally steady in length in the A and D cycles for all periods, while the Vipi resin was steady in the A, B and C cycles for all periods. The Classico resin was dimensionally steady in width in the C and D cycles for all periods, and the Vipi resin was steady in all cycles and periods. The hardness values for Classico resin were steady in all cycles and periods, while the Vipi resin was steady only in the C cycle for all periods. Impact strength values for Classico resin were steady in the A, C and D cycles for all periods, while Vipi resin was steady in all cycles and periods. SMD promoted different effects on the linear dimensional changes, hardness and impact strength of acrylic resins submitted to different polymerization cycles when after SMD and water storage were considered.