515 resultados para Pharmaceuticals
Resumo:
Purpose: The purpose of this paper is to evaluate the antioxidant activity of ginger ethanol extract in soybean oil under thermoxidation. Design/methodology/approach: A total of four treatments were used: soybean oil free of synthetic antioxidants, soybean oil containing 2,500 mg/kg of ginger extract, soybean oil containing 50 mg/kg of TBHQ, soybean oil containing the mixture of natural extract, and TBHQ in the before-cited concentration. The treatments were discontinuously submitted to plates heated at 180°C, for 20 hours. Samples were removed in the times of 0, 4, 8, 12, 16 and 20 hours of heating and they were analyzed as to their oxidative stability, total polar compounds, peroxide and conjugated diene values. Findings: The results showed the efficiency of the ginger extract in protecting the oil against lipid oxidation. It could be concluded that ginger extract might be indicated as an additive that acts against lipid oxidation and, consequently, increases shelf life of food. Practical implications: These studies may prove to be beneficial to the exploitation of natural antioxidant sources for the preservation and/or extension of raw and processed food shelf life. Therefore, they could also be applied in the area of pharmaceuticals for the protection of human life. Originality/value: This study offers information on the use of natural antioxidants as an alternative to the use of synthetic antioxidants, which might be considered toxic. © Emerald Group Publishing Limited.
Resumo:
Purpose: The objective of this study was to evaluate the antioxidant effect of oregano and thyme extracts isolatedly and combinedly applied in soybean oil. Design/methodology/approach: Soybean oil containing 3,000 mg/kg of oregano and thyme oleoresins and the mixture of both, as well as soybean oil containing TBHQ (50 mg/kg) and soybean oil free of antioxidants, were subjected to accelerated oven test (60°C/10 days). Samples were collected every two days and analyzed as to their peroxide and conjugated diene values. Findings: The mixture of oleoresins and consequent increase of concentration were as effective as the antioxidant TBHQ. Practical implications: These studies may prove to be beneficial to the exploitation of natural antioxidant sources for the preservation and/or extension of raw and processed food shelf life. Therefore, they could also be applied in the area of pharmaceuticals for the protection of human life. Originality/value: This study offers information on the use of natural antioxidants as an alternative to the use of synthetic antioxidants, which might be considered toxic. © Emerald Group Publishing Limited.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Honey bee venom toxins trigger immunological, physiological, and neurological responses within victims. The high occurrence of bee attacks involving potentially fatal toxic and allergic reactions in humans and the prospect of developing novel pharmaceuticals make honey bee venom an attractive target for proteomic studies. Using label-free quantification, we compared the proteome and phosphoproteome of the venom of Africanized honeybees with that of two European subspecies, namely Apis mellifera ligustica and A. m. carnica. From the total of 51 proteins, 42 were common to all three subspecies. Remarkably, the toxins melittin and icarapin were phosphorylated. In all venoms, icarapin was phosphorylated at the 205Ser residue, which is located in close proximity to its known antigenic site. Melittin, the major toxin of honeybee venoms, was phosphorylated in all venoms at the 10Thr and 18Ser residues. 18Ser phosphorylated melittin-the major of its two phosphorylated forms-was less toxic compared to the native peptide. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Utilização de uma matriz híbrida orgânica-inorgânica na dinâmica de liberação controlada de fármacos
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)