968 resultados para Perturbation (Quantum dynamics)
Resumo:
In this thesis I present the work done during my PhD in the area of low dimensional quantum gases. The chapters of this thesis are self contained and represent individual projects which have been peer reviewed and accepted for publication in respected international journals. Various systems are considered, the first of which is a two particle model which possesses an exact analytical solution. I investigate the non-classical correlations that exist between the particles as a function of the tunable properties of the system. In the second work I consider the coherences and out of equilibrium dynamics of a one-dimensional Tonks-Girardeau gas. I show how the coherence of the gas can be inferred from various properties of the reduced state and how this may be observed in experiments. I then present a model which can be used to probe a one-dimensional Fermi gas by performing a measurement on an impurity which interacts with the gas. I show how this system can be used to observe the so-called orthogonality catastrophe using modern interferometry techniques. In the next chapter I present a simple scheme to create superposition states of particles with special emphasis on the NOON state. I explore the effect of inter-particle interactions in the process and then characterise the usefulness of these states for interferometry. Finally I present my contribution to a project on long distance entanglement generation in ion chains. I show how carefully tuning the environment can create decoherence-free subspaces which allows one to create and preserve entanglement.
Resumo:
In this thesis I theoretically study quantum states of ultracold atoms. The majority of the Chapters focus on engineering specific quantum states of single atoms with high fidelity in experimentally realistic systems. In the sixth Chapter, I investigate the stability and dynamics of new multidimensional solitonic states that can be created in inhomogeneous atomic Bose-Einstein condensates. In Chapter three I present two papers in which I demonstrate how the coherent tunnelling by adiabatic passage (CTAP) process can be implemented in an experimentally realistic atom chip system, to coherently transfer the centre-of-mass of a single atom between two spatially distinct magnetic waveguides. In these works I also utilise GPU (Graphics Processing Unit) computing which offers a significant performance increase in the numerical simulation of the Schrödinger equation. In Chapter four I investigate the CTAP process for a linear arrangement of radio frequency traps where the centre-of-mass of both, single atoms and clouds of interacting atoms, can be coherently controlled. In Chapter five I present a theoretical study of adiabatic radio frequency potentials where I use Floquet theory to more accurately model situations where frequencies are close and/or field amplitudes are large. I also show how one can create highly versatile 2D adiabatic radio frequency potentials using multiple radio frequency fields with arbitrary field orientation and demonstrate their utility by simulating the creation of ring vortex solitons. In the sixth Chapter I discuss the stability and dynamics of a family of multidimensional solitonic states created in harmonically confined Bose-Einstein condensates. I demonstrate that these solitonic states have interesting dynamical instabilities, where a continuous collapse and revival of the initial state occurs. Through Bogoliubov analysis, I determine the modes responsible for the observed instabilities of each solitonic state and also extract information related to the time at which instability can be observed.
Resumo:
The dynamics of two mutually coupled identical single-mode semi-conductor lasers are theoretically investigated. For small separation and large coupling between the lasers, symmetry-broken one-colour states are shown to be stable. In this case the light output of the lasers have significantly different intensities whilst at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable two-colour states, where both single-mode lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. For low coupling but possibly large separation, the frequency of the relaxation oscillations of the freerunning lasers defines the dynamics. Chaotic and quasi-periodic states are identified and shown to be stable. For weak coupling undamped relaxation oscillations dominate where each laser is locked to three or more odd number of colours spaced by the relaxation oscillation frequency. It is shown that the instabilities that lead to these states are directly connected to the two colour mechanism where the change in the number of optical colours due to a change in the plane of oscillation. At initial coupling, in-phase and anti-phase one colour states are shown to emerge from “on” uncoupled lasers using a perturbation method. Similarly symmetry-broken one-colour states come from considering one free-running laser initially “on” and the other laser initially “off”. The mechanism that leads to a bi-stability between in-phase and anti-phase one-colour states is understood. Due to an equivariant phase space symmetry of being able to exchange the identical lasers, a symmetric and symmetry-broken variant of all states mentioned above exists and is shown to be stable. Using a five dimensional model we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-colour, symmetric and symmetry-broken two-colour, symmetric and symmetry-broken undamped relaxation oscillations, symmetric and symmetry-broken quasi-periodic, and symmetric and symmetry-broken chaotic states. As symmetry-broken states always exist in pairs, they naturally give rise to bi-stability. Several of these states show multistabilities between symmetric and symmetry-broken variants and among states. Three memory elements on the basis of bi-stabilities in one and two colour states for two coupled single-mode lasers are proposed. The switching performance of selected designs of optical memory elements is studied numerically.
Resumo:
Transient dynamical studies of bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethyne (PPd(2)), 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II) (PPd(3)), bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethyne (PPt(2)), and 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II) (PPt(3)) show that the electronically excited triplet states of these highly conjugated supermolecular chromophores can be produced at unit quantum yield via fast S(1) → T(1) intersystem crossing dynamics (τ(isc): 5.2-49.4 ps). These species manifest high oscillator strength T(1) → T(n) transitions over broad NIR spectral windows. The facts that (i) the electronically excited triplet lifetimes of these PPd(n) and PPt(n) chromophores are long, ranging from 5 to 50 μs, and (ii) the ground and electronically excited absorptive manifolds of these multipigment ensembles can be extensively modulated over broad spectral domains indicate that these structures define a new precedent for conjugated materials featuring low-lying π-π* electronically excited states for NIR optical limiting and related long-wavelength nonlinear optical (NLO) applications.
Resumo:
Probe-based scanning microscopes, such as the STM and the AFM, are used to obtain the topographical and electronic structure maps of material surfaces, and to modify their morphologies on nanoscopic scales. They have generated new areas of research in condensed matter physics and materials science. We will review some examples from the fields of experimental nano-mechanics, nano-electronics and nano-magnetism. These now form the basis of the emerging field of Nano-technology. A parallel development has been brought about in the field of Computational Nano-science, using quantum-mechanical techniques and computer-based numerical modelling, such as the Molecular Dynamics (MD) simulation method. We will report on the simulation of nucleation and growth of nano-phase films on supporting substrates. Furthermore, a theoretical modelling of the formation of STM images of metallic clusters on metallic substrates will also be discussed within the non-equilibrium Keldysh Green function method to study the effects of coherent tunnelling through different atomic orbitals in a tip-sample geometry.
Resumo:
We extend a new formalism, which allows correlated electron-ion dynamics to be applied to the problem of open boundary conditions. We implement this at the first moment level (allowing heating of ions by electrons) and observe the expected cooling in the classical part of the ionic kinetic energy and current-induced heating in the quantum contribution. The formalism for open boundaries should be easily extended to higher moments of the correlated electron-ion fluctuations.
Resumo:
A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment.
Resumo:
A method for correlated quantum electron-ion dynamics is combined with a method for electronic open boundaries to simulate in real time the heating, and eventual equilibration at an elevated vibrational energy, of a quantum ion under current flow in an atomic wire, together with the response of the current to the ionic heating. The method can also be used to extract inelastic current voltage corrections under steady-state conditions. However, in its present form the open-boundary method contains an approximation that limits the resolution of current-voltage features. The results of the simulations are tested against analytical results from scattering theory. Directions for the improvement of the method are summarized at the end.
Resumo:
The laser-induced photodissociation of formaldehyde in the wavelength range 309<λ<330nm 309<λ<330nm has been investigated using H (Rydberg) atom photofragment translational spectroscopy. Photolysis wavelengths corresponding to specific rovibronic transitions in the A ˜ A 2 1 ←X ˜ A 1 1 ÃA21←X̃A11 2 1 0 4 3 0 201403 , 2 2 0 4 1 0 202401 , 2 2 0 4 3 0 202403 , 2 3 0 4 1 0 203401 , and 2 1 0 5 1 0 201501 bands of H 2 CO H2CO were studied. The total kinetic energy release spectra so derived can be used to determine partial rotational state population distributions of the HCO cofragment. HCO product state distributions have been derived following the population of various different N K a NKa levels in the A ˜ A 2 1 ÃA21 2 2 4 3 2243 and 2 3 4 1 2341 states. Two distinct spectral signatures are identified, suggesting competition between dissociation pathways involving the X ˜ A 1 1 X̃A11 and the a ˜ A 2 3 ãA23 potential energy surfaces. Most rovibrational states of H 2 CO(A ˜ A 2 1 ) H2CO(ÃA21) investigated in this work produceH+HCO(X ˜ A ′ 2 ) H+HCO(X̃A′2) photofragments with a broad kinetic energy distribution and significant population in high energy rotational states of HCO. Photodissociation via the A ˜ A 2 1 ÃA21 2 2 4 3 2243 1 1,1 11,1 (and 1 1,0 11,0 ) rovibronic states yields predominantly HCO fragments with low internal energy, a signature that these rovibronic levels are perturbed by the a ˜ A 2 3 ãA23 state. The results also suggest the need for further careful measurements of the H+HCO H+HCO quantum yield from H 2 CO H2CO photolysis at energies approaching, and above, the barrier to C–H bond fission on the a ˜ A 2 3 ãA23 potential energy surface.
Resumo:
Ultrashort (<15 fs) high intensity (1014-1016 W cm-2) laser pulses have provided novel methods for investigation of the dynamics of simple molecular ions such as H2+ and D2+. In this paper we report on simulations carried out for the D2+ molecular ion, within the Born- Oppenheimer and two-state approximations. These simulations allow one to investigate the dissociation dynamics of the D2+ molecular ion when subjected to such ultrashort, intense laser pulses. In particular, these simulations are compared to the results from recent pump-probe experiments, in which, the nuclear vibrational motion of D2+ has been imaged. Simulations suggest that the nature of the dissociation process, be it 1- or 2-photon, may be influenced by the tuning of the pump-probe delay time.
Resumo:
The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev–Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted.
Resumo:
We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to nonunitary dynamics.
Resumo:
Recent advances in the study of quantum vibrations and rotations in the fundamental hydrogen molecules are reported. Using the deuterium molecules (D-2(+) and D-2) as exemplars, the application of ultrafast femtosecond pump-probe experiments to study the creation and time-resolved imaging of coherent nuclear wavepackets is discussed. The ability to study the motion of these fundamental molecules in the time-domain is a notable milestone, made possible through the advent of ultrashort intense laser pulses with durations on sub-vibrational (and sub-rotational) timescales. Quantum wavepacket revivals are characterised for both vibrational and rotational degrees of freedom and quantum models are used to provide a detailed discussion of the underlying ultrafast physical dynamics for the specialist and non-specialist alike. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Goldstone's idea of slow dynamics resulting from spontaneously broken symmetries is applied to Hubbell's neutral hypothesis of community dynamics, to efficiently simplify stage-structured multi-species models-introducing the quasi-neutral approximation (QNA). Rather than assuming population-dynamical neutrality in the QNA, deviations from ideal neutrality, thought to be small, drive dynamics. The QNA is systematically derived to first and second order in a two-scale singular perturbation expansion. The total reproductive value of species, as computed from the effective life-history parameters resulting from the non-linear interactions with the surrounding community, emerges as the new dynamic variables in this aggregated description. Using a simple stage-structured community-assembly model, the QNA is demonstrated to accurately reproduce population dynamics in large, complex communities. Further, the utility of the QNA in building intuition for management problems is illustrated by estimating the responses of a fish stock to harvesting and variations in fecundity.
Resumo:
The propagation of small amplitude stationary profile nonlinear electrostatic excitations in a pair plasma is investigated, mainly drawing inspiration from experiments on fullerene pair-ion plasmas. Two distinct pair ion species are considered of opposite polarity and same mass, in addition to a massive charged background species, which is assumed to be stationary, given the frequency scale of interest. In the pair-ion context, the third species is thought of as a background defect (e.g. charged dust) component. On the other hand, the model also applies formally to electron-positron-ion (e-p-i) plasmas, if one neglects electron-positron annihilation. A two-fluid plasma model is employed, incorporating both Lorentz and Coriolis forces, thus taking into account the interplay between the gyroscopic (Larmor) frequency ?c and the (intrinsic) plasma rotation frequency O0. By employing a multi-dimensional reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived for the evolution of the electric potential perturbation. Assuming an arbitrary direction of propagation, with respect to the magnetic field, we derive the exact form of nonlinear solutions, and study their characteristics. A parametric analysis is carried out, as regards the effect of the dusty plasma composition (background number density), species temperature(s) and the relative strength of rotation to Larmor frequencies. It is shown that the Larmor and mechanical rotation affect the pulse dynamics via a parallel-to-transverse mode coupling diffusion term, which in fact diverges at ?c ? ±2O0. Pulses collapse at this limit, as nonlinearity fails to balance dispersion. The analysis is complemented by investigating critical plasma compositions, in fact near-symmetric (T- ˜ T+) “pure” (n- ˜ n+) pair plasmas, i.e. when the concentration of the 3rd background species is negligible, case in which the (quadratic) nonlinearity vanishes, so one needs to resort to higher order nonlinear theory. A modified ZK equation is derived and analyzed. Our results are of relevance in pair-ion (fullerene) experiments and also potentially in astrophysical environments, e.g. in pulsars.