986 resultados para Pendant-arm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that a fake body part can be incorporated into human body representation through synchronous multisensory stimulation on the fake and corresponding real body part- the most famous example being the Rubber Hand Illusion. However, the extent to which gross asymmetries in the fake body can be assimilated remains unknown. Participants experienced, through a head-tracked stereo head-mounted display a virtual body coincident with their real body. There were 5 conditions in a between-groups experiment, with 10 participants per condition. In all conditions there was visuo-motor congruence between the real and virtual dominant arm. In an Incongruent condition (I), where the virtual arm length was equal to the real length, there was visuo-tactile incongruence. In four Congruent conditions there was visuo-tactile congruence, but the virtual arm lengths were either equal to (C1), double (C2), triple (C3) or quadruple (C4) the real ones. Questionnaire scores and defensive withdrawal movements in response to a threat showed that the overall level of ownership was high in both C1 and I, and there was no significant difference between these conditions. Additionally, participants experienced ownership over the virtual arm up to three times the length of the real one, and less strongly at four times the length. The illusion did decline, however, with the length of the virtual arm. In the C2-C4 conditions although a measure of proprioceptive drift positively correlated with virtual arm length, there was no correlation between the drift and ownership of the virtual arm, suggesting different underlying mechanisms between ownership and drift. Overall, these findings extend and enrich previous results that multisensory and sensorimotor information can reconstruct our perception of the body shape, size and symmetry even when this is not consistent with normal body proportions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of the human brain with computers is an interesting new area of applied neuroscience, where one application is replacement of a person"s real body by a virtual representation. Here we demonstrate that a virtual limb can be made to feel part of your body if appropriate multisensory correlations are provided. We report an illusion that is invoked through tactile stimulation on a person"s hidden real right hand with synchronous virtual visual stimulation on an aligned 3D stereo virtual arm projecting horizontally out of their shoulder. An experiment with 21 male participants showed displacement of ownership towards the virtual hand, as illustrated by questionnaire responses and proprioceptive drift. A control experiment with asynchronous tapping was carried out with a different set of 20 male participants who did not experience the illusion. After 5 min of stimulation the virtual arm rotated. Evidence suggests that the extent of the illusion was also correlated with the degree of muscle activity onset in the right arm as measured by EMG during this period that the arm was rotating, for the synchronous but not the asynchronous condition. A completely virtual object can therefore be experienced as part of one"s self, which opens up the possibility that an entire virtual body could be felt as one"s own in future virtual reality applications or online games, and be an invaluable tool for the understanding of the brain mechanisms underlying body ownership.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The objective measurement of dominant/nondominant arm use proportion in daily life may provide relevant information on healthy and pathologic arm behavior. This prospective case-control study explored the potential of such measurements as indicators of upper limb functional recovery after rotator cuff surgery. METHODS: Data on dominant/nondominant arm usage were acquired with body-worn sensors for 7 hours. The postsurgical arm usage of 21 patients was collected at 3, 6, and 12 months after rotator cuff surgery in the sitting, walking, and standing postures and compared with a reference established with 41 healthy subjects. The results were calculated for the dominant and nondominant surgical side subgroups at all stages. The correlations with clinical scores were calculated. RESULTS: Healthy right-handed and left-handed dominant arm usage was 60.2% (±6.3%) and 53.4% (±6.6%), respectively. Differences in use of the dominant side were significant between the right- and left-handed subgroups for sitting (P = .014) and standing (P = .009) but not for walking (P = .328). The patient group showed a significant underuse of 10.7% (±8.9%) at 3 months after surgery (P < .001). The patients recovered normal arm usage within 12 months, regardless of surgical side. The arm underuse measurement was weakly related to function and pain scores. CONCLUSION: This study provided new information on arm recovery after rotator cuff surgery using an innovative measurement method. It highlighted that objective arm underuse measurement is a valuable indicator of upper limb postsurgical outcome that captures a complementary feature to clinical scores.