940 resultados para Packing, transportation and storage
Resumo:
One of the main problems related to the use of diesel as fuel is the presence of sulfur (S) which causes environmental pollution and corrosion of engines. In order to minimize the consequences of the release of this pollutant, Brazilian law established maximum sulfur content that diesel fuel may have. To meet these requirements, diesel with a maximum sulfur concentration equal to 10 mg/kg (S10) has been widely marketed in the country. However, the reduction of sulfur can lead to changes in the physicochemical properties of the fuel, which are essential for the performance of road vehicles. This work aims to identify the main changes in the physicochemical properties of diesel fuel and how they are related to reduction of sulfur content. Samples of diesel types S10, S500 and S1800 were tested according with the methods of the American Society for Testing and Materials (ASTM). The fuels were also characterized by thermogravimetric analysis (TG) and subjected to physical distillation (ASTM D86) and simulated distillation gas chromatography (ASTM D2887). The results showed that the reduction of sulfur turned the fuel lighter and fluid, allowing a greater applicability to low temperature environments and safer for transportation and storage. Through the simulated distillation data was observed that decreasing sulfur content resulted in higher initial boiling point temperatures and the decreasing of the boiling temperature of the medium and heavy fractions. Thermogravimetric analysis showed a loss event mass attributed to volatilization or distillation of light and medium hydrocarbons. Based on these data, the kinetic behavior of the samples was investigated and it was observed that the activation energies (Ea) did not show significant changes throughout conversion. Considering the average of these energies, the S1800 had the highest Ea during the conversion and the S10 the lowest values
Resumo:
Silver and mercury are both dissolved in cyanide leaching and the mercury co-precipitates with silver during metal recovery. Mercury must then be removed from the silver/mercury amalgam by vaporizing the mercury in a retort, leading to environmental and health hazards. The need for retorting silver can be greatly reduced if mercury is selectively removed from leaching solutions. Theoretical calculations were carried out based on the thermodynamics of the Ag/Hg/CN- system in order to determine possible approaches to either preventing mercury dissolution, or selectively precipitating it without silver loss. Preliminary experiments were then carried out based on these calculations to determine if the reaction would be spontaneous with reasonably fast kinetics. In an attempt to stop mercury from dissolving and leaching the heap leach, the first set of experiments were to determine if selenium and mercury would form a mercury selenide under leaching conditions, lowering the amount of mercury in solution while forming a stable compound. From the results of the synthetic ore experiments with selenium, it was determined that another effect was already suppressing mercury dissolution and the effect of the selenium could not be well analyzed on the small amount of change. The effect dominating the reactions led to the second set of experiments in using silver sulfide as a selective precipitant of mercury. The next experiments were to determine if adding solutions containing mercury cyanide to un-leached silver sulfide would facilitate a precipitation reaction, putting silver in solution and precipitating mercury as mercury sulfide. Counter current flow experiments using the high selenium ore showed a 99.8% removal of mercury from solution. As compared to leaching with only cyanide, about 60% of the silver was removed per pass for the high selenium ore, and around 90% for the high mercury ore. Since silver sulfide is rather expensive to use solely as a mercury precipitant, another compound was sought which could selectively precipitate mercury and leave silver in solution. In looking for a more inexpensive selective precipitant, zinc sulfide was tested. The third set of experiments did show that zinc sulfide (as sphalerite) could be used to selectively precipitate mercury while leaving silver cyanide in solution. Parameters such as particle size, reduction potential, and amount of oxidation of the sphalerite were tested. Batch experiments worked well, showing 99.8% mercury removal with only ≈1% silver loss (starting with 930 ppb mercury, 300 ppb silver) at one hour. A continual flow process would work better for industrial applications, which was demonstrated with the filter funnel set up. Funnels with filter paper and sphalerite tested showed good mercury removal (from 31 ppb mercury and 333 ppb silver with a 87% mercury removal and 7% silver loss through one funnel). A counter current flow set up showed 100% mercury removal and under 0.1% silver loss starting with 704 ppb silver and 922 ppb mercury. The resulting sphalerite coated with mercury sulfide was also shown to be stable (not releasing mercury) under leaching tests. Use of sphalerite could be easily implemented through such means as sphalerite impregnated filter paper placed in currently existing processes. In summary, this work focuses on preventing mercury from following silver through the leaching circuit. Currently the only possible means of removing mercury is by retort, creating possible health hazards in the distillation process and in transportation and storage of the final mercury waste product. Preventing mercury from following silver in the earlier stages of the leaching process will greatly reduce the risk of mercury spills, human exposure to mercury, and possible environmental disasters. This will save mining companies millions of dollars from mercury handling and storage, projects to clean up spilled mercury, and will result in better health for those living near and working in the mines.
Resumo:
This chapter provides updated information on avocado fruit quality parameters, sensory perception and maturity, production and postharvest factors affecting quality defects, disinfestation and storage (including pre-conditioning), predicting outturn quality and processing.
Resumo:
Reproductive modes are diverse and unique in anurans. Selective pressures of evolution, ecology and environment are attributed to such diverse reproductive modes. Globally forty different reproductive modes in anurans have been described to date. The genus Nyctibatrachus has been recently revised and belongs to an ancient lineage of frog families in the Western Ghats of India. Species of this genus are known to exhibit mountain associated clade endemism and novel breeding behaviours. The purpose of this study is to present unique reproductive behaviour, oviposition and parental care in a new species Nyctibatrachus kumbara sp. nov. which is described in the paper. Nyctibatrachus kumbara sp. nov. is a medium sized stream dwelling frog. It is distinct from the congeners based on a suite of morphological characters and substantially divergent in DNA sequences of the mitochondrial 16S rRNA gene. Males exhibit parental care by mud packing the egg clutch. Such parental care has so far not been described from any other frog species worldwide. Besides this, we emphasize that three co-occurring congeneric species of Nyctibatrachus, namely N. jog, N. kempholeyensis and Nyctibatrachus kumbara sp. nov. from the study site differ in breeding behaviour, which could represent a case of reproductive character displacement. These three species are distinct in their size, call pattern, reproductive behaviour, maximum number of eggs in a clutch, oviposition and parental care, which was evident from the statistical analysis. The study throws light on the reproductive behaviour of Nyctibatrachus kumbara sp. nov. and associated species to understand the evolution and adaptation of reproductive modes of anurans in general, and Nyctibatrachus in particular from the Western Ghats.
Resumo:
In the manufacture of granular NPK fertilizer the product is cooled before packaging and storage in moisture-proof bags. It has been shown that the temperature of the fertilizer prior to packing is significant in that at high temperatures, drying of the granules takes place in the bag which causes an increase in the humidity of the air surrounding the granules and thus an increase in moisture content at the granule - granule interface. This surface moisture was shown to increase the likelihood of agglomeration in the fertilizer by a capillary adhesion/unconfined yield stress model. An iterative model was set up to establish conditions that would prevent drying occurring, which takes into account fertilizer drying rate, fertilizer cooling rate cooling rate and the effect of coating oils on the drying mechanism.
Resumo:
A tanulmány a szakirodalomban újszerű kezdeményezésként kísérletet tesz a gabonapiac ellátási láncának felrajzolására, majd annak egyik, a cikk alapkérdése szempontjából kiemelt vetületét, a gabonaszállítási és raktározási problémákat elemzi. Előbbit a piac szereplőitől kvalitatív módon begyűjtött információkkal, utóbbit a szakirodalom alapján mutatja be. A cikk az elemzés után javaslatokkal szolgál ahhoz, hogyan lehetne hazánkban egy integrált gabonapiaci szállítási-raktározási-átrakási rendszert kialakítani. __________ The aim of the article is to present the situation of the Hungarian cereals transport and storage-reloading market and by interconnection, to treat cereals market’s operations systemically. Under this process, the study trace to draw a possible supply chain of the national cereals market up, which is a new initiation in the Hungarian literature. The focus of the article is to analyse transport and storage processes in the cereals market using the framework mentioned above. Transport market is demonstrated on the grounds of a revealing qualitative research, while storage market is brought out by literature. After analysis, the article gives recommendations how to shape an integrated transport and storage-reload system in the Hungarian cereals market.
Resumo:
Illegal street racing has received increased attention in recent years from the media, governments and road safety professionals. At the same time, there has been a shift from treating illegal street racing as a public nuisance issue to a road safety problem in Australia, as this behaviour now attracts a penalty of increased periods of vehicle impoundment leading to permanent vehicle forfeiture for repeat offences. This severe vehicle sanction is typically applied to repeat drink driving offenders and drivers who breach suspensions and disqualifications in North American jurisdictions, but was first introduced in Australia to deal with illegal street racing and associated risky driving behaviours, grouped together under the label of ‘hooning’ in Australian jurisdictions. This paper describes how Australian jurisdictions are dealing with this issue. The research described in this paper drew on multiple data sources to explore illegal street racing and the management of this issue in Australia. First, the paper reviews the relevant legislation in each Australian state to describe the cross-jurisdictional similarities and differences in approaches. It also describes some results from focus group discussions and a quantitative online survey with drivers who self-report engaging in illegal street racing and associated behaviours in Queensland, Australia. It was found that approaches to dealing with illegal street racing and associated risky driving behaviours in each Australian state are similar, with increasing periods of vehicle impoundment (leading to vehicle forfeiture) applied to repeat hooning offences within prescribed periods. Participants in the focus groups and respondents to the questionnaire generally felt these penalty periods were severe, with perceptions of severity increasing with the length of the penalty period. It was concluded that there is a need for each jurisdiction to objectively evaluate the effectiveness of their vehicle impoundment and forfeiture programs for hooning. These evaluations should compare the relative costs of these programs (e.g., enforcement, unrecovered towing and storage fees, and court costs) to the observed benefits (e.g., reduction in target behaviours, reduction in community complaints, and reduction in the number and severity of associated crashes).
Resumo:
The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.
Resumo:
The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 mandated the consideration of safety in the regional transportation planning process. As part of National Cooperative Highway Research Program Project 8-44, "Incorporating Safety into the Transportation Planning Process," we conducted a telephone survey to assess safety-related activities and expertise at Governors Highway Safety Associations (GHSAs), and GHSA relationships with metropolitan planning organizations (MPOs) and state departments of transportation (DOTs). The survey results were combined with statewide crash data to enable exploratory modeling of the relationship between GHSA policies and programs and statewide safety. The modeling objective was to illuminate current hurdles to ISTEA implementation, so that appropriate institutional, analytical, and personnel improvements can be made. The study revealed that coordination of transportation safety across DOTs, MPOs, GHSAs, and departments of public safety is generally beneficial to the implementation of safety. In addition, better coordination is characterized by more positive and constructive attitudes toward incorporating safety into planning.
Resumo:
Pipe insulation between the collector and storage tank on pumped storage (commonly called split), solar water heaters can be subject to high temperatures, with a maximum equal to the collector stagnation temperature. The frequency of occurrence of these temperatures is dependent on many factors including climate, hot water demand, system size and efficiency. This paper outlines the findings of a computer modelling study to quantify the frequency of occurrence of pipe temperatures of 80 degrees Celsius or greater at the outlet of the collectors for these systems. This study will help insulation suppliers determine the suitability of their materials for this application. The TRNSYS program was used to model the performance of a common size of domestic split solar system, using both flat plate and evacuated tube, selective surface collectors. Each system was modelled at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 - Heat Water Systems - Calculation of energy consumption, and the ORER RECs calculation method. TRNSYS was used to predict the frequency of occurrence of the temperatures that the pipe insulation would be exposed to over an average year, for hot water consumption patterns specified in AS/NZS4234, and for worst case conditions in each of the climate zones. The results show; * For selectively surfaced, flat plate collectors in the hottest location (Alice Sprints) with a medium size hot water demand according to AS/NZS2434, the annual frequency of occurrence of temperatures at and above 80 degrees Celsius was 33 hours. The frequency of temperatures at and above 140 degrees Celsius was insignificant. * For evacuated tube collectors in the hottest location (Alice Springs), the annual frequency of temperatures at and above 80 degrees Celsius was 50 hours. Temperatures at and above 140 degrees Celsius were significant and were estimated to occur for more than 21 hours per year in this climate zone. Even in Melbourne, temperatures at and above 80 degrees can occur for 12 hours per year and at and above 140 degrees for 5 hours per year. * The worst case identified was for evacuated tube collectors in Alice Springs, with mostly afternoon loads in January. Under these conditions, the frequency of temperatures at and above 80 degrees Celsius was 10 hours for this month only. Temperatures at and above 140 degrees Celsius were predicted to occur for 5 hours in January.