952 resultados para POROUS MATERIALS
Resumo:
We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.
Resumo:
We use the finite element method to solve reactive mass transport problems in fluid-saturated porous media. In particular, we discuss the mathematical expression of the chemical reaction terms involved in the mass transport equations for an isothermal, non-equilibrium chemical reaction. It has turned out that the Arrhenius law in chemistry is a good mathematical expression for such non-equilibrium chemical reactions especially from the computational point of view. Using the finite element method and the Arrhenius law, we investigate the distributions of PH (i.e. the concentration of H+) and the relevant reactive species in a groundwater system. Although the main focus of this study is on the contaminant transport problems in groundwater systems, the related numerical techniques and principles are equally applicable to the orebody formation problems in the geosciences. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
A novel pore tailoring method is proposed by which the pore-opening sizes of MCM-41 materials can be finely tuned without significant loss in pore volume and surface area.
Resumo:
The physical nonequilibrium of solute concentration resulting from preferential now of soil water has often led to models where the soil is partitioned into two regions: preferential flow paths, where solute transport occurs mainly by advection, and the remaining region, where significant solute transport occurs through diffusive exchange with the flow paths. These two-region models commonly ignore concentration gradients within the regions. Our objective was to develop a simple model to assess the influence of concentration gradients on solute transport and to compare model results with experiments conducted on structured materials. The model calculates the distribution of solutes in a single spherical aggregate surrounded by preferential now paths and subjected to alternating boundary conditions representing either an exchange of solutes between the two regions (a wet period) or no exchange but redistribution of solutes within the aggregate (a dry period). The key parameter in the model is the aggregate radius, which defines the diffusive time scales. We conducted intermittent leaching experiments on a column of packed porous spheres and on a large (300 mm long by 216 mm diameter) undisturbed field soil core to test the validity of the model and its application to field soils. Alternating wet and dry periods enhanced leaching by up to 20% for this soil, which was consistent with the model's prediction, given a fitted equivalent aggregate radius of 1.8 cm, If similar results are obtained for other soils, use of alternating wet and dry periods could improve management of solutes, for example in salinity control and in soil remediation.
Resumo:
We use the finite element method to model and predict the dissipative structures of chemical species for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. In particular, we explore the conditions under which dissipative structures of the species may exist in the Brusselator type of nonequilibrium chemical reaction. Since this is the first time the finite element method and related strategies have been used to study the chemical instability problems in a fluid-saturated porous medium, it is essential to validate the method and strategies before they are put into application. For this purpose, we have rigorously derived the analytical solutions for dissipative structures of chemical species in a benchmark problem, which geometrically is a square. Comparison of the numerical solutions with the analytical ones demonstrates that the proposed numerical method and strategy are robust enough to solve chemical instability problems in a fluid-saturated porous medium. Finally, the related numerical results from two application examples indicate that both the regime and the magnitude of pore-fluid flow have significant effects on the nature of the dissipative structures that developed for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. The motivation for this study is that self-organization under conditions of pore-fluid flow in a porous medium is a potential mechanism of the orebody formation and mineralization in the upper crust of the Earth. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Depending on the size and shape of the materials, methods employed to achieve effective fluidization during fluid bed drying varies from use of simple hole distributors for small, light weight materials to special techniques for lager and/or moist materials. This paper reviews common air distributors used in fluidized bed drying of food particulates. Also it reviews special methods of fluidizing larger irregular food particulates.
Resumo:
A new isotherm is proposed here for adsorption of condensable vapors and gases on nonporous materials having type II isotherms according to the Brunauer-Deming-Deming-Teller (BDDH) classification. The isotherm combines the recent molecular-continuum model in the multilayer region, with other widely used models for sub-monolayer coverage, some of which satisfy the requirement of a Henry's law asymptote. The model is successfully tested using isotherm data for nitrogen adsorption on nonporous silica, carbon and alumina, as well as benzene and hexane adsorption on nonporous carbon. Based on the data fits, out of several different alternative choices of model for the monolayer region, the Freundlich and the Unilan models are found to be the most successful when combined with the multilayer model to predict the whole isotherm. The hybrid model is consequently applicable over a wide pressure range. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
In this article, a new hybrid model for estimating the pore size distribution of micro- and mesoporous materials is developed, and tested with the adsorption data of nitrogen, oxygen, and argon on ordered mesoporous materials reported in the literature. For the micropore region, the model uses the Dubinin-Rudushkevich (DR) isotherm with the Chen-Yang modification. A recent isotherm model of the authors for nonporous materials, which uses a continuum-mechanical model for the multilayer region and the Unilan model for the submonolayer region, has been extended for adsorption in mesopores. The experimental data is inverted using regularization to obtain the pore size distribution. The present model was found to be successful in predicting the pore size distribution of pure as well as binary physical mixtures of MCM-41 synthesized with different templates, with results in agreement with those from the XRD method and nonlocal density functional theory. It was found that various other recent methods, as well as the classical Broekhoff and de Beer method, underpredict the pore diameter of MCM-41. The present model has been successfully applied to MCM-48, SBA's, CMK, KIT, HMS, FSM, MTS, mesoporous fly ash, and a large number of other regular mesoporous materials.
Resumo:
A hybrid formulation for coupled pore fluid-solid deformation problems is proposed. The scheme is a hybrid in the sense that we use a vertex centered finite volume formulation for the analysis of the pore fluid and a particle method for the solid in our model. The pore fluid formally occupies the same space as the solid particles. The size of the particles is not necessarily equal to the physical size of materials. A finite volume mesh for the pore fluid flow is generated by Delaunay triangulation. Each triangle possesses an initial porosity. Changes of the porosity are specified by the translations of the mass centers of particles. Net pore pressure gradients are applied to the particle centers and are considered in the particle momentum balance. The potential of our model is illustrated by means of a simulation of coupled fracture and fluid flow developed in porous rock under biaxial compression condition.
Resumo:
In the present work, various theories predicting the critical diameter for the absence of capillary condensation and hysteresis are applied to experimental adsorption isotherms of vapors on regular mesoporous materials. Among the various theories studied, the tensile strength approximation proposed by the authors was found to be the most successful. Reversibility of nitrogen adsorption at 77.4 K was studied on pure MCM-41 of various pore sizes, as well as mixtures of pure MCM-41 samples in a 1:1 ratio. The results of PSD and hysteresis on MCM-41 mixtures are close to that expected from studies of the pure materials. The estimates of hysteresis critical temperature and diameter of MCM-41, HMS, FSM and KIT materials are also provided.
Resumo:
We use the finite element method to model three-dimensional convective pore-fluid flow in fluid-saturated porous media when they are heated from below. In particular, we employ the particle-tracking technique to mimic the trajectories of particles in three-dimensional fluid flow problems. The related numerical results demonstrated that: (1) The progressive asymptotic approach procedure, which was previously developed for the finite element modelling of two-dimensional convective pore-fluid flow problems, is equally applicable to the finite element modelling of three-dimensional convective pore-fluid flow in fluid-saturated porous media heated from below. (2) The perturbation of gravity at different planes has a significant effect on the pattern of three-dimensional convective pore-fluid flow and therefore, may influence the pattern of orebody formation and mineralization in three-dimensional hydrothermal systems. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Considerable effort has been devoted to quantifying the wave-induced soil response in a porous seabed in the last few decades. Most previous investigations have focused on the analysis of pore pressure and effective stresses within isotropic sediments, despite strong evidence of anisotropic soil behaviour reported in the literature. Furthermore, the seepage flux, which is important in the context of contaminant transport, has not been examined. In this paper, we focus on water wave-driven seepage in anisotropic marine sediments of finite thickness. The numerical results predict that the effects of hydraulic anisotropy and anisotropic soil behaviour on the wave-driven seepage in marine sediment are significant. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
We derive a general thermo-mechanical theory for particulate materials consisting of granules of arbitrary whose material points possess three translational and three independent rotational degrees of freedom. Additional field variables are the translational and rotational granular temperatures, the kinetic energies shape and size. The kinematics of granulate is described within the framework of a polar continuum theory of the velocity and spin fluctuations respectively and the usual thermodynamic temperature. We distinguish between averages over particle categories (averages in mass/velocity and moment of inertia/spin space, respectively) and particle phases where the average extends over distinct subsets of particle categories (multi phase flows). The relationship between the thermal energy in the granular system and phonon energy in a molecular system is briefly discussed in the main body of the paper and discussed in detail in the Appendix A. (C) 2001 Elsevier Science B.V. All rights reserved.