444 resultados para PIPELINES
Resumo:
Pipelines are linear construction that intersect several environments, requiring integration of environmental and technical aspects in its various elaboration steps. Environmental impact assessment if made to integrate the environmental information to enable environmental characterization, possibility identify previously fragilities of environment what contributes to the safety forecast of the significant impacts. These studies shall consider superimpose of the elements and the worsening of critical situations that already exists. In this way, meet and analyse informations about the environmental impact assessment, constructive aspects related to pipelines transport and get environmental impact studies of the case studies, providing the student a critical vision for the discussion of the apropiate balance between description and analysis, methodological rigour and the interface between construction and the environmente with inserts. Performing the critical analysis of methodologies and applied criteria for the environmental diagnosis and impact identification, search improve the methodologies for elaboration of environmental impact studies for linear construction, particulary pipelines, minin conflicts and giving security for the license process. Await provide subsidy to direction data collection, for choosing environmental indicator and for the prognosis and indentification of impacts.
Resumo:
On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT P110, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of nonmetallic inclusions in the welded joint
Resumo:
In engineering, for correct designing the structural components required for cyclical stresses, it is necessary to determine a limit of resistance to fatigue, which is the maximum amplitude of the applied tension under which the fatigue failure does not occurs after a certain number cycles. The marine environment is hostile, not only by the high pressure, corrosion, but also by low temperatures. Petrol Production units, composed of the risers (pipelines connecting the oil well to the ship), are dimensioned to remain installed for periods of 20 up to 30 years, and must therefore be prepared to support various efforts, such as tidal, wind currents and everything that is related. This paper focuses on a study on the fatigue behavior of microalloyed steel, API 5L Grade X70, used to transport oil and gas by pipelines. For analysis, we obtained the curves S-N (stress vs. number of cycles) using laboratory data collected from cylindrical longitudinal and transverse specimens used in axial fatigue test in accordance with ASTM E466. The tensile tests and microhardness were performed to characterize the mechanical properties of the samples, and it was found that the values meet the specifications of the standard API 5L. To characterize microstructurally the material, it was also made a metallographic analysis of the steel under study, and the origin of the fatigue crack was investigated with the support of a scanning electron microscope (SEM).
Resumo:
The transportation of oil through pipelines raises a concern related to safety and environmental impacts they may cause, especially when exposed to risks that affect their integrity. Among the natural phenomena that can affect the pipelines are erosion and landslides. Considering the large territory involving the pipelines, remote sensing tools have a great applicability for data acquisition. For this, visual analysis techniques were applied to perform change detection in order to monitor erosion features and landslides along a stretch of pipeline Rio de Janeiro – Belo Horizonte, in the state of Rio de Janeiro. The work involved the characterization of the study area as well as the erosion and landslide processes, through bibliographical data. The satellite image processing and the application of change detection techniques were developed in two scenes for the years 2002 and 2010. It was noted a small increase in the number of the identified features, however with regard to their area, a decrease of 21.7% was observed
Resumo:
Pipelines are linear engineering works, designed mostly for transporting oil and its derivatives for long distances, furnishing even the farthermost zones of the country. Due to oil sector needs to ensure for the safety and conservation of its properties, several geotechnical studies are being held at the pipelines field, in order to preserve this important transportation, and also to prevent accidents, which might seriously compromise the environment and the population who lives around it. The OSBRA pipeline, who connects the city of Paulínia to the capital Brasília, is one of these engineering works that deserves to be pointed out. This research, performed at the Ribeirão da Prata Basin, was a pilot study conducted with the main objective of testing the current methodology efficiency, for future applications in the closest watersheds to the OSBRA pipeline. The objective of this research is to analyze flood wave and debris flow processes in a non-fictional watershed, by comparing two different kinds of methods: the first one based on simulation models (software ‘ABC 6’), and the other one by flood wave and debris flow susceptibility mapping. The results from the hydrological modeling were both hydrographs and ietographs that estimated values of outputs and infiltration. To construct the susceptibility maps were necessary three other maps: ground use and occupation maps, divided according to the different protection degrees that were offered to the ground; maps of dam locations in the area and physiographic compartimentation maps, divided according to the local geology. To complete the methodology, the results were collected from both methods for comparison. The obtained product for this methodology was series of data whose different susceptibility degrees to flood wave and debris flow could define the safest route for a pipeline crossing in this watershed...
Resumo:
Given the intense expansion of the industries in Brazil and the discovery of hydrocarbons in the pre-salt layer of the Santos and Campos Basin, there is a need to expand the distribution of oil and gas network in the country. The present work aims to present the development of susceptibility map by two distinct methods of two events (debris flows and full wave), applied to the establishment of pipelines on Ribeirão da Prata Basin. The research area covers two municipalities: São João da Boa Vista and Águas da Prata, in total 145 km2. In the paper was used the methodology proposed by Zaine (2011) for the physiographic subdivision method, which uses geological maps, geomorphological maps, digital terrain models and aerial photographs, used to extract the main elements of the physical environment, as rivers, lines, ridges, tops forms and valley forms and historical processes. Thus, the basin was divided into 11 physiographic zones, considering the following elements: thickness of soil, rock type, geomorphology, amplitude, ridges orientation, erosion occurences and mass movements. Were subsequently performed location maps of dams, that had as main purpose to localize major dams in the study area along with their area and perimeter of the reservoir, and land use map that subdivided the area in woody vegetation, permanent culture, temporary culture and urban area. Along with the preparation of the auxiliar maps was conducted a field campaign with three days and approximately 2 points per km2, which aimed to better understand the physical environment and check the main peculiarities of the study area. Criteria have been established for susceptibility maps physiographic subdivision and land use, and a survey of criteria weights used in each map for both processes under study. For the preparation of susceptibility maps were adopted two different methods, which treat the weighted average and the multiplicand. The weighted average method it is...
Resumo:
From the beginning of the century, with the advent of the flex fuel car, successor fluctuations in oil prices and the rise of awareness of the impending shortage of fossil fuels, the alcohol sector begins to reappear in the panorama of national economy making Brasill reaches the point of becoming a leading exporter of this product. Ethanol assumed the role of such importance in Brazilian exports, which Petrobras through the Growth Acceleration Program (PAC) has made investments in the Brazilian pipeline network to better ensure the production of ethanol to major ports. The means of transport in pipelines are safe and inexpensive, but require careful evaluation in its implementation, they may lead to negative social and environmental impacts. Thus, the purpose of this project is to propose the best route for an ethanol pipeline connectin the Tietê-Paraná, leaving the municipality of Santa Maria da Serra (SP), to the Planalto Paulista Refinery (REPLAN), located in Paulinia (SP), belonging to the passage of ethanol export corridor, currently under revelopment. The technique used for the development of the stroke is the association of multicriteria evaluation, the geographical information system (SIG) and geotechnologies. This study presented three possible layouts for the ethanol pipeline, highlighting the best option, in addition, demonstrated the suitability of the area to receive projects of similar nature to a pipeline
Resumo:
The metropolitan region of São Paulo is the most populous of the country, this happens because of its great importance in the national economy and the job opportunities that are offered to the population. These factors result in intense population growth and urban expansion, reaching some non-habitable places of the metropolis, as areas of pipelines, which are very important for the transportation of natural gas, oil and its derivatives. Before the population growth of the region, these sites were unoccupied, do not presenting problems for the population. However, with the disorderly occupation is generated great anthropogenic pressure on the pipeline stitches, causing risks to people who are around them. Therefore it is extremely important to monitor the strip of pipelines through products and techniques of remote sensing and geoprocessing, enabling, through high spatial resolution images, identification of objects or phenomena that occur on Earth's surface that can alter the functioning and safety of pipelines. Therefore, this study aims to monitor a stretch of the area of the pipeline mesh GASPAL/OSVAT and Capuava Refinery (RECAP), located on the outskirts of the metropolitan area of São Paulo in the city of Mauá, who suffer great human pressure, proving thus the techniques of remote sensing and geographic information system (GIS) as effective tools for monitoring phenomena occurred in urban areas of great complexity. The monitoring was done by object-based classification applied in orbital images Ikonos II and RapidEye, of high spatial resolution and, image processing, detection of objects, segmentation, classification and editing were developed through the eCognition and ArcGis softwares. To determine the statistical accuracy of the mapping of the land cover of the stretch of pipeline in Maua, the results were analyzed by error matrix... (Complete abstract click electronic access below)
Resumo:
It is clear today the ever-accelerating search for new fuels that will eventually replace those that will survive in our society, which are fossil fuels. For this reason, a fuel used since the dawn of humanity and much studied since then, considered the generator of clean, renewable energy, can earn more and more space in the power generation sector, which is biomass. We performed two experiments with two different types of biomass, one from the Amazon rainforest and other pine and eucalyptus as waste from the sawmill UNESP Itapeva. In the first experiment, conducted at the Laboratory of Combustion and Propulsion INPE Cachoeira Paulista were conducted three tests in a chimney with a fan creating forced ventilation, where the biomass was burned and deposited on a support beneath the hood. In the second experiment was conducted to analyze the emission of particulate matter using biomass (waste) from the sawmill on the campus of UNESP experimental Itapeva the burning of it in a burner for heating water for a wood oven. In these experiments we used a particle called DATARAM4 sampler that is capable of sampling both outdoors and inside of pipelines, which is the focus of this work. With this equipment it was possible to measure the concentration of particulate matter in all the firings as above, and compare them to levels acceptable in the current law, always trying to analyze the so-called fine particles, which are those with diameters less than 2.5 μm. Using data obtained from the equipment was also possible to evaluate the diametral distribution of particulate matter in question, and verify which phases of the flares in the concentration and the diameters of the particles are the most critical. In this work we concluded that in all firings conducted concentrations of particulate matter were higher than that allowed by the law, and the diameters were found that are more harmful to human health
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Different forms of human pressure may occur in the pipeline ranges, due to the large extensions and various configurations of land use, which can pass through the pipelines. Due to the dynamics of these pressures, it is necessary to monitor temporal changes of land use and cover the surface. Under this theme, appears as extremely important to use products and techniques of remote sensing, as they allow the identification of objects of the land surface that may compromise the security and monitoring of the pipeline, and allows the extraction of information conditions on land use at different periods of time. Based on the above, this paper aims to examine in a temporal approach, the process of urban expansion in the municipality of Duque de Caxias, located on the outskirts of the metropolitan area of the state of Rio de Janeiro, as well as settlement patterns characteristic of areas that the changes occurred in the period 1987 to 2010. We used the technique of visual analysis to perform the change detection and the technique of image classification, aimed at monitoring human pressure over a stretch of track pipeline Rio de Janeiro - Belo Horizonte, located in the state of Rio de Janeiro. The stages of work involved the characterization of the study area, urban sprawl and the existing settlement patterns, through the analysis of bibliographic data. The processing of Landsat 5 images and the application of the technique of change detection were performed in three scenes for the years 1987, 1998 and 2010, while the classification process was performed on the image RapidEye for the year 2010. Can be noted an increase in urban area of approximately 22.38% and the change of land cover from natural to built. This growth is concentrated outside to the area of direct influence of the duct, occurring in the area of indirect influence of the enterprise. Regarding the settlement patterns of growth areas, it was observed that these are predominantly
Resumo:
The research addresses the need for detailed geological and geotechnical investigations in pipeline’s design, given the diversity of geological units crossed by these works along its layout, which often extends for hundreds of miles. For its large size, this type of work often goes through different states and regions with very different characteristics in terms of topography, vegetation, geology and geotechnical conditions. For a better use of these investigations in order to avoid unnecessary costs and inefficient results, some authors recommend that steps be taken to study, seeking a progressive detail of the pipeline’s implantation area. The main objective of the study is to describe, analyze and correlate the proposals for geological and geotechnical’s investigation recommended by the authors selected. Nogueira Junior & Marques (1998) suggest that for better effectiveness of geological and geotechnical investigations associated with the deployment of pipelines, different research methods are applied sequentially in five major stages of the building. Rocha et al (2008) recommend that, for the pipeline’s implantation using horizontal directional drilling, investigations are performed in three phases of study, to be developed in coordination with the project stages. For Gelinas & Mathy (2004), when time and budget constraints permit, geotechnical investigations for directional drilling projects for pipelines must be made in four sequential phases. Heinz (2008) suggests that the geotechnical investigations for pipeline’s implantation using horizontal directional drilling at crossings of water bodies are carried out in three successive stages. By the development of research, we could see that all the different proposals recommend studies in sequential phases, starting from a more general scale for a more specific, seeking a progressive understanding of the geological model of the area where you intend to deploy the pipeline
Resumo:
The technological advancement in order to improve the methods of obtaining energy sources such as oil and natural gas is mainly motivated by the recent discovery of oil reserves. So, increasingly , there is a need for a thorough knowledge of the materials used in the manufacture of pipelines for transportation and exploration of oil and natural gas. The steels which follow the API standard (American Petroleum Institute), also known as high strenght low alloy (hsla), are used in the manufacture of these pipes, as they have, with their welded joints, mechanical properties to withstand the working conditions to which these ducts will be submitted . The objective of this study is to evaluate the fatigue behavior in microalloyed steel grade API 5L X80 welded by process HF / ERW . For this, axial fatigue tests to obtain S-N curve (stress vs. number of cycles ) were conducted. To complement the study, it was performed metallographic , fractographic , Vickers hardness tests and tensile tests to characterize the mechanical properties of the steel and check whether the values satisfy the specifications of the API 5L standard . From the fatigue tests , it was concluded that the surface finish influences directly on the fatigue life of the material
Resumo:
The analysis of natural processes, such as landslides, has a great importance for the prevention of accidents in pipelines, since it might compromise its security, with serious social and environmental implications. Considering the large territorial dimensions that pipelines can reach, remote sensing tools have great applicability for data acquisition, allowing the analysis of large areas in regular time periods. This study aims to analyze the relations between the occurrence of landslides and its natural conditionings, on a stretch of the ORBEL pipeline, in the municipalities of Duque de Caxias, Nova Iguaçu and Belford Roxo – Rio de Janeiro. GeoEye sensor system images were used with spatial resolution of 0.5 m, from November/2009, January/2010 and March/2010, that are months of summer rains. The work involved the characterization of the study area and existing landslides, through bibliographic data collection; the application of visual analysis techniques for the extraction of landslide scars and fractures; preparation of maps for the landslide constraints and preparation of the susceptibility map. In the images from November only three landslide scars were extracted, while in January there were 166 and 111 in March. Difficulties were found with the shading in the images. From the relations among landslide scars, lithological units, relief systems, slope, downhill profile and the generated map of landslide susceptibility, presented in 1:70,000 scale, it was possible to conclude that slope is the main determinant of the process, allied secondarily to downhill profile, relief systems and lithology
Resumo:
The hardness has an important role in quality control, in research studies and metallurgical and mechanical specification, selection and comparison of various materials. This property is of extreme importance in the oil industry because it is a determining factor to ascertain the safety of the material used in pressure vessels and pipelines. Due to the inability to stop the equipment while checking the hardness, the hardness testers are widely used portable method UCI, its great advantage is the fact that an essay fast, simple realization and not be considered a non-destructive testing with a good relationship money. The objective is to determine if there is significant difference in hardness measurements between 80 and 1200 sandpaper using a portable hardness tester UCI method, the material applied in gas storage spheres composition ASTM 516 Gr 70. After determining the number of homogeneity, we performed the hardness profile to isolate the major factors influencing the hardness part: cold rolling and segregation of impurities. Factors Cooling and sanding were analyzed using the method of design of experiments (DOE), in which it was demonstrated that neither variables nor their interactions, has significant influence on the hardness measurements by portable MIC 10. This fact will lead to reduction in time and cost for surface preparation