924 resultados para PARTITION-COEFFICIENT
Resumo:
A method is presented for estimating the initial compression, the final compression and the coefficient of consolidation from an observed, experimental consolidation response, using a plot of velocity versus displacement and the conventional Taylor plot of compression versus the square root of time. Goodness of fit measures indicate that the method produces good agreement between fitted and measured displacement values, at least up until the point where the impact of secondary compression on the overall displacement response becomes significant.
Determining the Reaeration Coefficient and Hydrodynamic Properties of Rivers Using Inert Gas Tracers
Resumo:
Various contaminants which can be aerobically degraded find their way directly or indirectly into surface water bodies. The reaeration coefficient (K2) characterises the rate at which oxygen can transfer from the atmosphere across the air-water interface following oxygen depletion in a water body. Other mechanisms (like advection, dispersion and transient storage) determine how quickly the contaminants can spread in the water, affecting their spatial and temporal concentrations. Tracer methods involving injection of a gas into the water body have traditionally been used for direct (in-situ) measurement of K2 in a given reach. This paper shows how additional modelling of tracer test results can be used to quantify also hydrodynamic mechanisms (e.g. dispersion and storage exchange coefficients, etc.). Data from three tracer tests conducted in the River Lagan (Northern Ireland) using an inert gas (krypton, Kr) are re-analysed using two solute transport models (ADM, TSM) and an inverse-modelling framework (OTIS-P). Results for K2 are consistent with previously published values for this reach (K2(20)~10-40 d-1). The storage area constituted 30-60% of the main cross-section area and the storage exchange rate was between 2.5×10-3-3.2×10-3s-1. The additional hydrodynamic parameters obtained give insight into transport and dispersion mechanisms within the reach.
Resumo:
Gas fluidised beds have many applications in a wide range of industrial sectors and it is important to be able to predict their performance. This requires, for example, a deeper appreciation of the flow of the particles in such systems using both empirical and numerical methods. The coefficient of restitution is an important collisional parameter that is used in some granular flow models in order to predict the velocities and positions of the particles in fluidised beds. The current paper reports experimental data involving the coefficients of restitution of three different representative types of granule viz. melt, wet and binderless granules. They were measured at various impact velocities and the values were compared with those calculated from different theoretical models based on quasi-static contact mechanics. This required knowledge of the Young's moduli and yield stresses, which were measured quasi-statically using diametric compression. The results show that the current theoretical models for the coefficient of restitution explored here lead to either an over- or an under-estimation of the measured values. The melt granules exhibited the greatest values of the coefficient of restitution, Young's modulus and yield stress. The differences in these values were consistent with the nature of the interparticle bonding for each of the three granule types. A new model for the calculation of the coefficient of restitution of granular material was developed that takes account of the work hardening of the granules during impact. Generally, this model provides an improved prediction of the measured values. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Workspace analysis and optimization are important in a manipulator design. As the complete workspace of a 6-DOF manipulator is embedded into a 6-imensional space, it is difficult to quantify and qualify it. Most literatures only considered the 3-D sub workspaces of the complete 6-D workspace. In this paper, a finite-partition approach of the Special Euclidean group SE(3) is proposed based on the topology properties of SE(3), which is the product of Special Orthogonal group SO(3) and R^3. It is known that the SO(3) is homeomorphic to a solid ball D^3 with antipodal points identified while the geometry of R^3 can be regarded as a cuboid. The complete 6-D workspace SE(3) is at the first time parametrically and proportionally partitioned into a number of elements with uniform convergence based on its geometry. As a result, a basis volume element of SE(3) is formed by the product of a basis volume element of R^3 and a basis volume element of SO(3), which is the product of a basis volume element of D^3 and its associated integration measure. By this way, the integration of the complete 6-D workspace volume becomes the simple summation of the basis volume elements of SE(3). Two new global performance indices, i.e., workspace volume ratio Wr and global condition index GCI, are defined over the complete 6-D workspace. A newly proposed 3 RPPS parallel manipulator is optimized based on this finite-partition approach. As a result, the optimal dimensions for maximal workspace are obtained, and the optimal performance points in the workspace are identified.
Resumo:
This paper examines changes in religious geographies for Ireland from 1834 to 1911. It shows that in a period of dramatic social and economic change religious geographies remained remarkably stable. In this it challenges the accepted historiography. It makes use of new data in new ways with the full exploitation of the 1834 Enumeration of Religion and, in so doing, is able to examine the impact of the Great Irish Famine on geographies of religion. These data are visualised both using traditional choropleth maps and, more innovatively in this subject area, cartograms.
Resumo:
When simulating the High Pressure Die Casting ‘HPDC’ process, the heat transfer coefficient ‘HTC’ between the casting and the die is critical to accurately predict the quality of the casting. To determine the HTC at the metal–die interface a production die for an automotive engine bearing beam, Die 1, was instrumented with type K thermocouples. A Magmasoft® simulation model was generated with virtual thermocouple points placed in the same location as the production die. The temperature traces from the simulation model were compared to the instrumentation results. Using the default simulation HTC for the metal–die interface, a poor correlation was seen, with the temperature response being much less for the simulation model. Because of this, the HTC at the metal–die interface was modified in order to get a better fit. After many simulation iterations, a good fit was established using a peak HTC of 42,000 W/m2 K, this modified HTC was further validated by a second instrumented production die, proving that the modified HTC gives good correlation to the instrumentation trials. The updated HTC properties for the simulation model will improve the predictive capabilities of the casting simulation software and better predict casting defects.
Resumo:
The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19.800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This paper describes the computation of stress intensity factors (SIFs) for cracks in functionally graded materials (FGMs) using an extended element-free Galerkin (XEFG) method. The SIFs are extracted through the crack closure integral (CCI) with a local smoothing technique, non-equilibrium and incompatibility formulations of the interaction integral and the displacement method. The results for mode I and mixed mode case studies are presented and compared with those available in the literature. They are found to be in good agreement where the average absolute error for the CCI with local smoothing, despite its simplicity, yielded a high level of accuracy.
Resumo:
Despite its benefits, co-ownership of land creates problems where relations between the parties
have soured, or one person simply wants to extricate themselves from this arrangement. The
remedies of compulsory partition and sale allow one joint tenant or tenant in common to terminate
co-ownership against the wishes of the others, by seeking a court order to this effect. Throughout
parts of the common law world, this has be en based on nineteenth century English legislation namely
the Partition Act 1868, the key elements of which remain in force in Western Australia,
South Australia, Tasmania and the Australian Capital Territory. This article provides an up-to-date
analysis of the law on compulsory partition and sale as derived from the 1868 Act and analogous
provisions, drawing not only on Australian cases, but on frequently overlooked decisions from
courts in both parts of Ireland and in parts of Canada, as well as ‘old’ English judgments on the
1868 Act.