946 resultados para PALMITATE-INDUCED APOPTOSIS
Resumo:
Two-dimensional gel electrophoresis (2-DE) was used to better understand alterations in renal metabolism induced by fluoride (F). Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F for 60 days (n=6/group). Kidneys were collected for proteomic and histological (HE) analysis. After protein isolation, renal proteome profiles were examined using 2-DE and Colloidal Coomassie Blue staining. Protein spots with a 2-fold significant difference as detected by quantitative intensity analysis (image Master Platinum software) and t-test (p < 0.05) were excised and analyzed by MALDI-TOF MS (matrix assisted laser desorption ionization-time-of-flight mass spectrometry). The histological analysis revealed no damage in kidneys induced by F, except for a vascular congestion in the 50 ppm F group. Between control vs 50 ppm F, and control vs 5 ppm F groups, 12 and 6 differentially expressed proteins were detected, respectively. Six proteins, mainly related with metabolism, detoxification and housekeeping, were successfully identified. At the high F group, pyruvate carboxylase, a protein involved in the formation of oxaloacetate was found to be downregulated, while enoyl coenzyme A hydratase, involved in fatty acids oxidation, was found to be upregulated. Thus, proteomic analysis can provide new insights into the alterations in renal metabolism after F exposure, even in low doses. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
To better understand the role of nitric oxide (NO) in mammal development, specifically in the transition of the fetal stages at birth, we studied the timing of cell-specific expression of inducible NO synthase (iNOS) isoform during gestational periods of rats, mainly at the late stages of intra-uterine development. Before experimentation, the samples were collected (from 17th to 21st gestational days), fixed in 10% buffered formalin and embedded in paraffin for histological procedures. Hereafter, the sections (5 mu m thickness) obtained from different embryos were immunostained by avidin-biotin-immunoperoxidase technique, by using antibody against iNOS isoform. The most of cell immunopositive was suggestive of granulocyte-like cells and those cells were resident close to the blood vessels in different organs, such as: lung, liver or bone marrow environment. Sometimes we noted immunopositive cells in the blood flow, as reported in the thymus. In agreement, iNOS expression, obtained by western blotting analysis, showed the same profile. Together, our data shows that iNOS expression increased gradually during the late stages of rat development (from E17 to E21) and it was executed by cells close to blood vessels. Thus, we can clearly to predict that this expression was finely modulated and it contributes for time-line dependent NO production during rat late development.
Resumo:
Peroxisome proliferator-activated receptor-alpha (PPAR alpha) is a member of the steroid hormone receptor superfamily. In rodents, PPAR alpha. alters genes involved in cell cycle regulation in hepatocytes. Some of these genes are implicated in neuronal cell death. Therefore, in this study, we examined the toxicological consequence of PPAR alpha activation in rat primary cultures of cerebellar granule neurons. Our studies demonstrated the presence of PPAR alpha mRNA in cultures by reverse transcriptase-polymerase chain reaction. After 10 days in vitro, cerebellar granule neuron cultures were incubated with the selective PPAR alpha activator 4-chloro-6-(2,3-xylidino)2-pyrimidinylthioacetic acid (Wy-14,643). The inherent toxicity of Wy-14,643 and the effect of PPAR alpha activation following toxic stimuli were assessed. In these studies, neurotoxicity was induced through reduction of extracellular [KCl] from 25 mM to 5.36 mM. We observed no inherent toxicity of Wy-1 4,643 (24 hr) in cultured cerebellar granule cells. However, after reduction of [KCl], cerebellar granule cell cultures incubated with Wy-14,643 showed significantly greater toxicity than controls. These results suggest a posssible role for PPAR(x in augmentation of cerebellar granule neuronal death after toxic stimuli. (C) 2001 Wiley-Liss, Inc.
Resumo:
Using a pair of isogenic Burkitt's lymphoma cell lines, one of which is sensitive (BL30A) and the other resistant (BL30K) to apoptosis induced by ionising radiation and exogenous ceramide, we investigated mitogen-activated protein kinase (MAPK) signalling to determine which members of this kinase family are involved in the apoptotic process in these cells. We have previously shown that BL30A cells produce ceramide after irradiation and that this does not occur in BL30K cells (Michael et at. [1997] Cancer Res 57:3600-3605). We show that p38 MAPK is activated transiently in both cells after ionising radiation. On the of her hand, although JNK is rapidly activated in both cells, this activation is only transient in the resistant cells, whereas in the sensitive cells the activation is sustained. Addition of exogenous ceramide resulted in only a transient activation of INK in both cells. Interestingly, ERK activity was decreased in BL30A cells after ceramide treatment, whereas no such decrease occurred in the resistant cells. Treatment of BL30A cells with phorbol ester before irradiation, which blocks the increase in ceramide and apoptosis, also prevents the sustained increase in JNK activity. At the same time, ERK activity is increased. Our results suggest that p38 MAPK is not required for apoptosis signalling in response to ionising radiation in Burkitt's lymphoma cells and that sustained activation of JNK is necessary for apoptosis in these cells. These results also support the hypothesis that a balance between JNK and ERK activity determines cell fate after exposure to ceramide or ionising radiation. In addition, our results suggest different signalling pathways from exogenous ceramide and radiation, supporting the concept of different intracellular pools of active ceramide. Drug Dev. Res. 52:534-541, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
Mutations in the ATM gene lead to the genetic disorder ataxia-telangiectasia. ATM encodes a protein kinase that is mainly distributed in the nucleus of proliferating cells. Recent studies reveal that ATM regulates multiple cell cycle checkpoints by phosphorylating different targets at different stages of the cell cycle. ATM also functions in the regulation of DNA repair and apoptosis, suggesting that it is a central regulator of responses to DNA double-strand breaks.
Resumo:
Immunity induced by the 19-kDa fragment of merozoite surface protein 1 is dependent on CD4(+) Th cells. However, we found that adoptively transferred CFSE-labeled Th cells specific for an epitope on Plasmodium yoelii 19-kDa fragment of merozoite surface protein 1 (peptide (p)24), but not OVA-specific T cells, were deleted as a result of P. yoelii infection. As a result of infection, spleen cells recovered from infected p24-specific T cell-transfused mice demonstrated reduced response to specific Ag. A higher percentage of CFSE-labeled p24-specific T cells stained positive with annexin and anti-active caspase-3 in infected compared with uninfected mice, suggesting that apoptosis contributed to deletion of p24-specific T cells during infection. Apoptosis correlated with increased percentages of p24-specific T cells that stained positive for Fas from infected mice, suggesting that P. yoelii-induced apoptosis is, at least in part, mediated by Fas. However, bystander cells of other specificities also showed increased Fas expression during infection, suggesting that Fas expression alone is not sufficient for apoptosis. These data have implications for the development of immunity in the face of endemic parasite exposure.
Resumo:
Heterogeneous expression of several antigens on the three currently defined tonsil dendritic cell (DC) subsets encouraged us to re-examine tonsil DCs using a new method that minimized DC differentiation and activation during their preparation. Three-color flow cytometry and dual-color immunohistology was used in conjunction with an extensive panel of antibodies to relevant DC-related antigens to analyze lin(-) HLA-DR+ tonsil DCs. Here we identify, quantify, and locate five tonsil DC subsets based on their relative expression of the HLA-DR, CD11c, CD13, and CD123 antigens. In situ localization identified four of these DC subsets as distinct interdigitating DC populations. These included three new interdigitating DC subsets defined as HLA-DRhi CD11c(+) DCs, HLA-DRmod CD11c+ CD13(+) DCs, and HLA-DRmod CD11c(-) CD123(-) DCs, as well as the plasmacytoid DCs (HLA-DRmod CD11c- CD123(+)). These subsets differed in their expression of DC-associated differentiation/activation antigens and co-stimulator molecules including CD83, CMRF-44, CMRF-56, 2-7, CD86, and 4-1BB ligand. The fifth HLA-DRmod CD11c(+) DC subset was identified as germinal center DCs, but contrary to previous reports they are redefined as lacking the CD13 antigen. The definition and extensive phenotypic analysis of these five DC subsets In human tonsil extends our understanding of the complexity of DC biology.
Resumo:
Both antigen-specific and non-specific mechanisms may be involved in the pathogenesis of oral lichen planus (OLP). Antigen-specific mechanisms in OLP include antigen presentation by basal keratinocytes and antigen-specific keratinocyte killing by CD8(+) cytotoxic T-cells. Non-specific mechanisms include mast cell degranulation and matrix metalloproteinase (MMP) activation in OLP lesions. These mechanisms may combine to cause T-cell accumulation in the superficial lamina propria, basement membrane disruption, intra-epithelial T-cell migration, and keratinocyte apoptosis in OLP. OLP chronicity may be due, in part, to deficient antigen-specific TGF-beta1-mediated immunosuppression. The normal oral mucosa may be an immune privileged site (similar to the eye, testis, and placenta), and breakdown of immune privilege could result in OLP and possibly other autoimmune oral mucosal diseases. Recent findings in mucocutaneous graft-versus-host disease, a clinical and histological correlate of lichen planus, suggest the involvement of TNF-alpha, CD40, Fas, MMPs, and mast cell degranulation in disease pathogenesis. Potential roles for oral Langerhans cells and the regional lymphatics in OLP lesion formation and chronicity are discussed. Carcinogenesis in OLP may be regulated by the integrated signal from various tumor inhibitors (TGF-beta1, TNF-alpha, IFN-gamma, IL-12) and promoters (MIF, MMP-9). We present our recent data implicating antigen-specific and non-specific mechanisms in the pathogenesis of OLP and propose a unifying hypothesis suggesting that both may be involved in lesion development. The initial event in OLP lesion formation and the factors that determine OLP susceptibility are unknown.
Resumo:
Expression of membrane-bound Fas ligand (FasL) by colorectal cancer cells may allow the development of an immune-privileged site by eliminating incoming tumour-infiltrating lymphocytes (TILs) in a Fas-mediated counter-attack. Sporadic colorectal cancer can be subdivided into three groups based on the level of DNA microsatellite instability (NISI). High-level NISI (NISI-High) is characterized by the presence of TILs and a favourable prognosis, while microsatellite-stable (MSS) cancers are TIL-deficient and low-level MSI (MSI-Low) is associated with an intermediate TIL density. The purpose of this study was to establish the relationship between MSI status and FasL expression in primary colorectal adenocarcinoma. Using immunohistochemistry and a selected series of 101 cancers previously classified as 31 MSI-High, 30 NISI-Low, and 40 MISS, the present study sought to confirm the hypothesis that increased TIL density in MSI-High cancers is associated with low or absent membrane-bound FasL expression, while increased FasL in MSS cancers allows the killing of host TILs. TUNEL/CD3 double staining was also used to determine whether MSS cancers contain higher numbers of apoptotic TILs in vivo than MSI-High or MSI-Low cancers. Contrary to the initial hypothesis, it was found that MSI-High cancers were associated with higher FasL expression (p = 0.04) and a stronger intensity of FasL staining (p = 0.007). In addition, mucinous carcinomas were independently characterized by increased FasL expression (p = 0.03) and staining intensity (p = 0.0005). Higher FasL expression and staining intensity did not correlate with reduced TIL density or increased numbers of apoptotic TILs. However, consistent with the hypothesis that curtailment of the host anti-tumour immune response contributes to the poor prognosis in MSS cancers, it was found that apoptotic TILs were most abundant in MSS carcinomas and metastatic Dukes' stage C or D tumours (p = 0.004; p = 0.046 respectively). This study therefore suggests that MSS colorectal cancers are killing incoming TILs in an effective tumour counter-attack, but apparently not via membrane-bound FasL. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.
Resumo:
PIDD has been implicated in survival and apoptotic pathways in response to DNA damage, and a role for PIDD was recently identified in non-homologous end-joining (NHEJ) repair induced by γ-irradiation. Here, we present an interaction of PIDD with PCNA, first identified in a proteomics screen. PCNA has essential functions in DNA replication and repair following UV irradiation. Translesion synthesis (TLS) is a process that prevents UV irradiation-induced replication blockage and is characterized by PCNA monoubiquitination and interaction with the TLS polymerase eta (polη). Both of these processes are inhibited by p21. We report that PIDD modulates p21-PCNA dissociation, and promotes PCNA monoubiquitination and interaction with polη in response to UV irradiation. Furthermore, PIDD deficiency leads to a defect in TLS that is associated, both in vitro and in vivo, with cellular sensitization to UV-induced apoptosis. Thus, PIDD performs key functions upon UV irradiation, including TLS, NHEJ, NF-κB activation and cell death.
Resumo:
Mycophenolic acid, a selective inhibitor of the de novo synthesis of guanosine nucleotides in T and B lymphocytes, has been proposed to inhibit human immunodeficiency virus (HIV) replication in vitro by depleting the substrate (guanosine nucleotides) for reverse transcriptase. Here we show that mycophenolic acid induced apoptosis and cell death in a large proportion of activated CD4+ T cells, thus indicating that it may inhibit HIV infection in vitro by both virological mechanisms and immunological mechanisms (depletion of the pool of activated CD4+ T lymphocytes). Administration of mycophenolate mophetil, the ester derivate of mycophenolic acid, to HIV-infected subjects treated with anti-retroviral therapy and with undetectable viremia resulted in the reduction of the number of dividing CD4 + and CD8+ T cells and in the inhibition of virus isolation from purified CD4+ T-cell populations. Based on these results, the potential use of mycophenolate mophetil in the treatment of HIV infection deserves further investigation in controlled clinical trials.