466 resultados para Orthopaedic
Resumo:
This article reports about the internet based, second multicenter study (MCS II) of the spine study group (AG WS) of the German trauma association (DGU). It represents a continuation of the first study conducted between the years 1994 and 1996 (MCS I). For the purpose of one common, centralised data capture methodology, a newly developed internet-based data collection system ( http://www.memdoc.org ) of the Institute for Evaluative Research in Orthopaedic Surgery of the University of Bern was used. The aim of this first publication on the MCS II was to describe in detail the new method of data collection and the structure of the developed data base system, via internet. The goal of the study was the assessment of the current state of treatment for fresh traumatic injuries of the thoracolumbar spine in the German speaking part of Europe. For that reason, we intended to collect large number of cases and representative, valid information about the radiographic, clinical and subjective treatment outcomes. Thanks to the new study design of MCS II, not only the common surgical treatment concepts, but also the new and constantly broadening spectrum of spine surgery, i.e. vertebro-/kyphoplasty, computer assisted surgery and navigation, minimal-invasive, and endoscopic techniques, documented and evaluated. We present a first statistical overview and preliminary analysis of 18 centers from Germany and Austria that participated in MCS II. A real time data capture at source was made possible by the constant availability of the data collection system via internet access. Following the principle of an application service provider, software, questionnaires and validation routines are located on a central server, which is accessed from the periphery (hospitals) by means of standard Internet browsers. By that, costly and time consuming software installation and maintenance of local data repositories are avoided and, more importantly, cumbersome migration of data into one integrated database becomes obsolete. Finally, this set-up also replaces traditional systems wherein paper questionnaires were mailed to the central study office and entered by hand whereby incomplete or incorrect forms always represent a resource consuming problem and source of error. With the new study concept and the expanded inclusion criteria of MCS II 1, 251 case histories with admission and surgical data were collected. This remarkable number of interventions documented during 24 months represents an increase of 183% compared to the previously conducted MCS I. The concept and technical feasibility of the MEMdoc data collection system was proven, as the participants of the MCS II succeeded in collecting data ever published on the largest series of patients with spinal injuries treated within a 2 year period.
Resumo:
INTRODUCTION: Osteoporosis is not only responsible for an increased number of metaphyseal and spinal fractures but it also complicates their treatment. To prevent the initial loosening, we developed a new implant with an enlarged implant/bone interface based on the concept of perforated, hollow cylinders. We evaluated whether osseointegration of a hollow cylinder based implant takes place in normal or osteoporotic bone of sheep under functional loading conditions during anterior stabilization of the lumbar spine. MATERIALS AND METHODS: Osseointegration of the cylinders and status of the fused segments (ventral corpectomy, replacement with iliac strut, and fixation with testing implant) were investigated in six osteoporotic (age 6.9 +/- 0.8 years, mean body weight 61.1 +/- 5.2 kg) and seven control sheep (age 6.1 +/- 0.2 years, mean body weight 64.9 +/- 5.7 kg). Osteoporosis was introduced using a combination protocol of ovariectomy, high-dose prednisone, calcium and phosphor reduced diet and movement restriction. Osseointegration was quantified using fluorescence and conventional histology; fusion status was determined using biomechanical testing of the stabilized segment in a six-degree-of-freedom loading device as well as with radiological and histological staging. RESULTS: Intact bone trabeculae were found in 70% of all perforations without differences between the two groups (P = 0.26). Inside the cylinders, bone volume/total volume was significantly higher than in the control vertebra (50 +/- 16 vs. 28 +/- 13%) of the same animal (P<0.01), but significantly less (P<0.01) than in the near surrounding (60 +/- 21%). After biomechanical testing as described in Sect. "Materials and methods", seven spines (three healthy and four osteoporotic) were classified as completely fused and six (four healthy and two osteoporotic) as not fused after a 4-month observation time. All endplates were bridged with intact trabeculae in the histological slices. CONCLUSIONS: The high number of perforations, filled with intact trabeculae, indicates an adequate fixation; bridging trabeculae between adjacent endplates and tricortical iliac struts in all vertebrae indicates that the anchorage is adequate to promote fusion in this animal model, even in the osteoporotic sheep.
Resumo:
BACKGROUND: The aim of this study was to investigate the biochemical properties, histological and immunohistochemical appearance, and magnetic resonance (MR) imaging findings of reparative cartilage after autologous chondrocyte implantation (ACI) for osteochondritis dissecans (OCD). METHODS: Six patients (mean age 20.2 +/- 8.8 years; 13-35 years) who underwent ACI for full-thickness cartilage defects of the femoral condyle were studied. One year after the procedure, a second-look arthroscopic operation was performed with biopsy of reparative tissue. The International Cartilage Repair Society (ICRS) visual histological assessment scale was used for histological assessment. Biopsied tissue was immunohistochemically analyzed with the use of monoclonal antihuman collagen type I and monoclonal antihuman collagen type II primary antibodies. Glycosaminoglycan (GAG) concentrations in biopsied reparative cartilage samples were measured by high performance liquid chromatography (HPLC). MR imaging was performed with T1- and T2-weighted imaging and three-dimensional spoiled gradient-recalled (3D-SPGR) MR imaging. RESULTS: Four tissue samples were graded as having a mixed morphology of hyaline and fibrocartilage while the other two were graded as fibrocartilage. Average ICRS scores for each criterion were (I) 1.0 +/- 1.5; (II) 1.7 +/- 0.5; (III) 0.6 +/- 1.0; (IV) 3.0 +/- 0.0; (V) 1.8 +/- 1.5; and (VI) 2.5 +/- 1.2. Average total score was 10.7 +/- 2.8. On immunohistochemical analysis, the matrix from deep and middle layers of reparative cartilage stained positive for type II collagen; however, the surface layer did not stain well. The average GAG concentration in reparative cartilage was 76.6 +/- 4.2 microg/mg whereas that in normal cartilage was 108 +/- 11.2 microg/mg. Common complications observed on 3D-SPGR MR imaging were hypertrophy of grafted periosteum, edema-like signal in bone marrow, and incomplete repair of subchondral bone at the surgical site. Clinically, patients had significant improvements in Lysholm scores. CONCLUSIONS: In spite of a good clinical course, reparative cartilage after ACI had less GAG concentration and was inferior to healthy hyaline cartilage in histological and immunohistochemical appearance and on MRI findings.
Resumo:
Mesenchymal stem cells (MSCs) provide an important source of pluripotent cells for musculoskeletal tissue repair. This study examined the impact of MSC implantation on cartilage healing characteristics in a large animal model. Twelve full-thickness 15-mm cartilage lesions in the femoropatellar articulations of six young mature horses were repaired by injection of a self-polymerizing autogenous fibrin vehicle containing mesenchymal stem cells, or autogenous fibrin alone in control joints. Arthroscopic second look and defect biopsy was obtained at 30 days, and all animals were euthanized 8 months after repair. Cartilage repair tissue and surrounding cartilage were assessed by histology, histochemistry, collagen type I and type II immunohistochemistry, collagen type II in situ hybridization, and matrix biochemical assays. Arthroscopic scores for MSC-implanted defects were significantly improved at the 30-day arthroscopic assessment. Biopsy showed MSC-implanted defects contained increased fibrous tissue with several defects containing predominantly type II collagen. Long-term assessment revealed repair tissue filled grafted and control lesions at 8 months, with no significant difference between stem cell-treated and control defects. Collagen type II and proteoglycan content in MSC-implanted and control defects were similar. Mesenchymal stem cell grafts improved the early healing response, but did not significantly enhance the long-term histologic appearance or biochemical composition of full-thickness cartilage lesions.
Resumo:
Computer assisted orthopaedic surgery (CAOS) technology has recently been introduced to overcome problems resulting from acetabular component malpositioning in total hip arthroplasty. Available navigation modules can conceptually be categorized as computer tomography (CT) based, fluoroscopy based, or image-free. The current study presents a comprehensive accuracy analysis on the computer assisted placement accuracy of acetabular cups. It combines analyses using mathematical approaches, in vitro testing environments, and an in vivo clinical trial. A hybrid navigation approach combining image-free with fluoroscopic technology was chosen as the best compromise to CT-based systems. It introduces pointer-based digitization for easily assessable points and bi-planar fluoroscopy for deep-seated landmarks. From the in vitro data maximum deviations were found to be 3.6 degrees for inclination and 3.8 degrees for anteversion relative to a pre-defined test position. The maximum difference between intraoperatively calculated cup inclination and anteversion with the postoperatively measured position was 4 degrees and 5 degrees, respectively. These data coincide with worst cases scenario predictions applying a statistical simulation model. The proper use of navigation technology can reduce variability of cup placement well within the surgical safe zone. Surgeons have to concentrate on a variety of error sources during the procedure, which may explain the reported strong learning curves for CAOS technologies.
Resumo:
Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.
Resumo:
A CT-based method ("HipMotion") for the noninvasive three-dimensional assessment of femoroacetabular impingement (FAI) was developed, validated, and applied in a clinical pilot study. The method allows for the anatomically based calculation of hip range of motion (ROM), the exact location of the impingement zone, and the simulation of quantified surgical maneuvers for FAI. The accuracy of HipMotion was 0.7 +/- 3.1 degrees in a plastic bone setup and -5.0 +/- 5.6 degrees in a cadaver setup. Reliability and reproducibility were excellent [intraclass correlation coefficient (ICC) > 0.87] for all measures except external rotation (ICC = 0.48). The normal ROM was determined from a cohort of 150 patients and was compared to 31 consecutive hips with FAI. Patients with FAI had a significantly decreased flexion, internal rotation, and abduction in comparison to normal hips (p < 0.001). Normal hip flexion and internal rotation are generally overestimated in a number of orthopedic textbooks. HipMotion is a useful tool for further assessment of impinging hips and for appropriate planning of the necessary amount of surgical intervention, which represents the basis for future computer-assisted treatment of FAI with less invasive surgical approaches, such as hip arthroscopy.
Resumo:
Acetabular retroversion has been proposed to contribute to the development of osteoarthritis of the hip. For the diagnosis of this condition, conventional AP pelvic radiographs may represent a reliable, easily available diagnostic modality as they can be obtained with a reproducible technique allowing the anterior and posterior acetabular rims to be visible for assessment. This study was designed to: (i) determine cranial, central, and caudal anatomic acetabular version (AV) from cadaveric specimens; (ii) establish the validity and reliability of the radiographic measurements of central acetabular anteversion; and (iii) determine the validity and reliability of the radiographic "cross-over-sign" to detect acetabular retroversion. Using 43 desiccated pelvises (86 acetabuli) the anatomic AVs were measured at three different transverse planes (cranially, centrally, and caudally). From these pelvises, standardized AP pelvic radiographs were obtained. To directly measure central AV, a modified radiographic method is introduced for the use of AP pelvic radiographs. The validity and reliability of this radiographic method and of the radiographic cross-over-sign to detect cranial acetabular retroversion were determined. The mean central and caudal anatomic AVs were approximately 20 degrees , and the mean cranial AV was 8 degrees . Cranial retroversion (AV < 0 degrees ) was present in 19 of 86 hips (22%). A linear correlation was found between the central and cranial AV. Below 10 degrees of central AV, all acetabuli were cranially retroverted. Between 10 degrees and 20 degrees , 30% of the acetabuli were cranially retroverted, and above 20 degrees , only 1 of 45 acetabuli was cranially retroverted. The radiographic measurement of the central AV (20.3 +/- 6.5 degrees ) correlated strongly with the anatomic AV (20.1 +/- 6.4 degrees ). The sensitivity of the cross-over-sign to detect a cranial acetabular anteversion of less than 4 degrees was 96%, its specificity 95%, and the positive predictive and negative predictive values 90% and 98%, respectively. Both the modified radiographic anteversion measurements and the cross-over-sign demonstrated substantial inter- and intraobserver reliability. Retroversion is almost exclusively a problem of the cranial acetabulum. The cranial AV is on average 12 degrees lower than the central AV, with the latter directly measurable from AP pelvic radiographs. A central AV of less than 10 degrees was associated with cranial retroversion. The presence of a positive cross-over-sign is a highly reliable indicator of cranial AV of <4 degrees.
Resumo:
BACKGROUND: Medial ankle joint pain with localized cartilage degeneration due to medial joint overload in varus malalignment of the hindfoot lends itself to treatment by lateral closing wedge supramalleolar osteotomy. METHODS: From 1998 to 2003, nine patients between the ages of 21 to 59 years were operated. The etiology of the malalignment and degeneration was posttraumatic in eight and childhood osteomyelitis in one. Preoperative and postoperative standing radiographs were analyzed to determine the correction of the deformity and the grade of degeneration. Function and pain were assessed using the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale. The average followup was 56 (range 15 to 88) months. RESULTS: The average time to osseous union was 10 +/- 3.31 weeks. There were no operative or postoperative complications. The average AOFAS score improved from 48 +/- 16.0 preoperatively to 74 +/- 11.7 postoperatively (p<0.004). The average pain subscore improved from 16 +/- 8.8 to 30 +/- 7.1 (p<0.008). The average tibial-ankle surface angle improved from 6.9 +/- 3.8 degrees of varus preoperatively to 0.6 +/- 1.9 degrees of valgus postoperatively (p<0.004). In the sagittal plane, the tibial-lateral-surface angle remained unchanged. At the final followup, two patients showed progression of radiographic ankle arthrosis grades. In one patient, it rose from grade 0 to I. In the other patient it advanced from grade II to III, with subsequent ankle arthrodesis required 16 months after the index procedure. Seven patients returned to their previous work. CONCLUSIONS: Lateral supramalleolar closing wedge osteotomy was an easy and safe procedure, effectively correcting hindfoot malalignment, relieving pain, restoring function, and halting progression of the degeneration in the short-term to mid-term in seven of nine patients.