828 resultados para Oriented Aggregation
Resumo:
The ferroelectric specimen is considered as an aggregation of many randomly oriented domains. According to this mechanism, a multi-domain mechanical model is developed in this paper. Each domain is represented by one element. The applied stress and electric field are taken to be the stress and electric field in the formula of the driving force of domain switching for each element in the specimen. It means that the macroscopic switching criterion is used for calculating the volume fraction of domain switching for each element. By using the hardening relation between the driving force of domain switching and the volume fraction of domain switching calibrated, the volume fraction of domain switching for each element is calculated. Substituting the stress and electric field and the volume fraction of domain switching into the constitutive equation of ferroelectric material, one can easily get the strain and electric displacement for each element. The macroscopic behavior of the ferroelectric specimen is then directly calculated by volume averaging. Meanwhile, the nonlinear finite element analysis for the ferroelectric specimen is carried out. In the finite element simulation, the volume fraction of domain switching for each element is calculated by using the same method mentioned above. The interaction between different elements is taken into account in the finite element simulation and the local stress and electric field for each element is obtained. The macroscopic behavior of the specimen is then calculated by volume averaging. The computation results involve the electric butterfly shaped curves of axial strain versus the axial electric field and the hysteresis loops of electric displacement versus the electric field for ferroelectric specimens under the uniaxial coupled stress and electric field loading. The present theoretical prediction agrees reasonably with the experimental results.
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
Resumo:
EFTA 2009
Resumo:
A unique chloroplast Signal Recognition Particle (SRP) in green plants is primarily dedicated to the post-translational targeting of light harvesting chlorophyll-a/b binding (LHC) proteins. Our study of the thermodynamics and kinetics of the GTPases of the system demonstrates that GTPase complex assembly and activation are highly coupled in the chloroplast GTPases, suggesting they may forego the GTPase activation step as a key regulatory point. This reflects adaptations of the chloroplast SRP to the delivery of their unique substrate protein. Devotion to one highly hydrophobic family of proteins also may have allowed the chloroplast SRP system to evolve an efficient chaperone in the cpSRP43 subunit. To understand the mechanism of disaggregation, we showed that LHC proteins form micellar, disc-shaped aggregates that present a recognition motif (L18) on the aggregate surface. Further molecular genetic and structure-activity analyses reveal that the action of cpSRP43 can be dissected into two steps: (i) initial recognition of L18 on the aggregate surface; and (ii) aggregate remodeling, during which highly adaptable binding interactions of cpSRP43 with hydrophobic transmembrane domains of the substrate protein compete with the packing interactions within the aggregate. We also tested the adaptability of cpSRP43 for alternative substrates, specifically in attempts to improve membrane protein expression and inhibition of amyloid beta fibrillization. These preliminary results attest to cpSRP43’s potential as a molecular chaperone and provides the impetus for further engineering endeavors to address problems that stem from protein aggregation.
Resumo:
Tesis leida en la Universidad de Aberdeen. 178 p.
Resumo:
The solution behavior of linear polymer chains is well understood, having been the subject of intense study throughout the previous century. As plastics have become ubiquitous in everyday life, polymer science has grown into a major field of study. The conformation of a polymer in solution depends on the molecular architecture and its interactions with the surroundings. Developments in synthetic techniques have led to the creation of precision-tailored polymeric materials with varied topologies and functionalities. In order to design materials with the desired properties, it is imperative to understand the relationships between polymer architecture and their conformation and behavior. To meet that need, this thesis investigates the conformation and self-assembly of three architecturally complex macromolecular systems with rich and varied behaviors driven by the resolution of intramolecular conflicts. First we describe the development of a robust and facile synthetic approach to reproducible bottlebrush polymers (Chapter 2). The method was used to produce homologous series of bottlebrush polymers with polynorbornene backbones, which revealed the effect of side-chain and backbone length on the overall conformation in both good and theta solvent conditions (Chapter 3). The side-chain conformation was obtained from a series of SANS experiments and determined to be indistinguishable from the behavior of free linear polymer chains. Using deuterium-labeled bottlebrushes, we were able for the first time to directly observe the backbone conformation of a bottlebrush polymer which showed self-avoiding walk behavior. Secondly, a series of SANS experiments was conducted on a homologous series of Side Group Liquid Crystalline Polymers (SGLCPs) in a perdeuterated small molecule liquid crystal (5CB). Monodomain, aligned, dilute samples of SGLCP-b-PS block copolymers were seen to self-assemble into complex micellar structures with mutually orthogonally oriented anisotropies at different length scales (Chapter 4). Finally, we present the results from the first scattering experiments on a set of fuel-soluble, associating telechelic polymers. We observed the formation of supramolecular aggregates in dilute (≤0.5wt%) solutions of telechelic polymers and determined that the choice of solvent has a significant effect on the strength of association and the size of the supramolecules (Chapter 5). A method was developed for the direct estimation of supramolecular aggregation number from SANS data. The insight into structure-property relationships obtained from this work will enable the more targeted development of these molecular architectures for their respective applications.
Resumo:
Eutrophication of fresh waters through anthropogenic enrichment by phosphorus is a global problem. The role of phosphorus enrichment in the formation of blooms of toxic blue-green algae (Cyanobacteria) in fresh waters is well established and of considerable concern in terms of human and animal health, loss of water resources and amenities, threats to fish stocks, and aesthetic considerations. Cultural eutrophication also poses threats to the ecosystem balance in fresh waters, with implications for wildlife. This article examines phosphorus enrichment in fresh waters from a systems perspective, and explores systems solutions that may be helpful in the development of more sustainable policies.
Resumo:
Well-aligned ZnO films have been successfully prepared by using low-temperature hydrothermal approach on (0001) sapphire substrates that were pre-coated with a ZnO nano-layer by dip-coating. The characterizations of scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicate that the ZnO films consist of hexagonal rods that grow along the c axis based on the sapphire substrates. It is found that the size of ZnO rods can be adjusted by an aqueous solution with some methenamine. (c) 2006 Elsevier B.V. All rights reserved.