919 resultados para Optical pattern recognition Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SiC optical processor for error detection and correction is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Data shows that the background act as selector that pick one or more states by splitting portions of the input multi optical signals across the front and back photodiodes. Boolean operations such as exclusive OR (EXOR) and three bit addition are demonstrated optically with a combination of such switching devices, showing that when one or all of the inputs are present the output will be amplified, the system will behave as an XOR gate representing the SUM. When two or three inputs are on, the system acts as AND gate indicating the present of the CARRY bit. Additional parity logic operations are performed by use of the four incoming pulsed communication channels that are transmitted and checked for errors together. As a simple example of this approach, we describe an all optical processor for error detection and correction and then, provide an experimental demonstration of this fault tolerant reversible system, in emerging nanotechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In machine learning and pattern recognition tasks, the use of feature discretization techniques may have several advantages. The discretized features may hold enough information for the learning task at hand, while ignoring minor fluctuations that are irrelevant or harmful for that task. The discretized features have more compact representations that may yield both better accuracy and lower training time, as compared to the use of the original features. However, in many cases, mainly with medium and high-dimensional data, the large number of features usually implies that there is some redundancy among them. Thus, we may further apply feature selection (FS) techniques on the discrete data, keeping the most relevant features, while discarding the irrelevant and redundant ones. In this paper, we propose relevance and redundancy criteria for supervised feature selection techniques on discrete data. These criteria are applied to the bin-class histograms of the discrete features. The experimental results, on public benchmark data, show that the proposed criteria can achieve better accuracy than widely used relevance and redundancy criteria, such as mutual information and the Fisher ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As novas tecnologias aplicadas ao processamento de imagem e reconhecimento de padrões têm sido alvo de um grande progresso nas últimas décadas. A sua aplicação é transversal a diversas áreas da ciência, nomeadamente a área da balística forense. O estudo de evidências (invólucros e projeteis) encontradas numa cena de crime, recorrendo a técnicas de processamento e análise de imagem, é pertinente pelo facto de, aquando do disparo, as armas de fogo imprimirem marcas únicas nos invólucros e projéteis deflagrados, permitindo relacionar evidências deflagradas pela mesma arma. A comparação manual de evidências encontradas numa cena de crime com evidências presentes numa base de dados, em termos de parâmetros visuais, constitui uma abordagem demorada. No âmbito deste trabalho pretendeu-se desenvolver técnicas automáticas de processamento e análise de imagens de evidências, obtidas através do microscópio ótico de comparação, tendo por base algoritmos computacionais. Estes foram desenvolvidos com recurso a pacotes de bibliotecas e a ferramentas open-source. Para a aquisição das imagens de evidências balísticas foram definidas quatro modalidades de aquisição: modalidade Planar, Multifocus, Microscan e Multiscan. As imagens obtidas foram aplicados algoritmos de processamento especialmente desenvolvidos para o efeito. A aplicação dos algoritmos de processamento permite a segmentação de imagem, a extração de características e o alinhamento de imagem. Este último tem como finalidade correlacionar as evidências e obter um valor quantitativo (métrica), indicando o quão similar essas evidências são. Com base no trabalho desenvolvido e nos resultados obtidos, foram definidos protocolos de aquisição de imagens de microscopia, que possibilitam a aquisição de imagens das regiões passiveis de serem estudadas, assim como algoritmos que permitem automatizar o posterior processo de alinhamento de imagens de evidências, constituindo uma vantagem em relação ao processo de comparação manual.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of chemical diffusion in biological tissues is a research field of high importance and with application in many clinical, research and industrial areas. The evaluation of diffusion and viscosity properties of chemicals in tissues is necessary to characterize treatments or inclusion of preservatives in tissues or organs for low temperature conservation. Recently, we have demonstrated experimentally that the diffusion properties and dynamic viscosity of sugars and alcohols can be evaluated from optical measurements. Our studies were performed in skeletal muscle, but our results have revealed that the same methodology can be used with other tissues and different chemicals. Considering the significant number of studies that can be made with this method, it becomes necessary to turn data processing and calculation easier. With this objective, we have developed a software application that integrates all processing and calculations, turning the researcher work easier and faster. Using the same experimental data that previously was used to estimate the diffusion and viscosity of glucose in skeletal muscle, we have repeated the calculations with the new application. Comparing between the results obtained with the new application and with previous independent routines we have demonstrated great similarity and consequently validated the application. This new tool is now available to be used in similar research to obtain the diffusion properties of other chemicals in different tissues or organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for segmenting white matter tracts from high angular resolution diffusion MR. images by representing the data in a 5 dimensional space of position and orientation. Whereas crossing fiber tracts cannot be separated in 3D position space, they clearly disentangle in 5D position-orientation space. The segmentation is done using a 5D level set method applied to hyper-surfaces evolving in 5D position-orientation space. In this paper we present a methodology for constructing the position-orientation space. We then show how to implement the standard level set method in such a non-Euclidean high dimensional space. The level set theory is basically defined for N-dimensions but there are several practical implementation details to consider, such as mean curvature. Finally, we will show results from a synthetic model and a few preliminary results on real data of a human brain acquired by high angular resolution diffusion MRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sparsely spaced highly permeable fractures of the granitic rock aquifer at Stang-er-Brune (Brittany, France) form a well-connected fracture network of high permeability but unknown geometry. Previous work based on optical and acoustic logging together with single-hole and cross-hole flowmeter data acquired in 3 neighbouring boreholes (70-100 m deep) has identified the most important permeable fractures crossing the boreholes and their hydraulic connections. To constrain possible flow paths by estimating the geometries of known and previously unknown fractures, we have acquired, processed and interpreted multifold, single- and cross-hole GPR data using 100 and 250 MHz antennas. The GPR data processing scheme consisting of timezero corrections, scaling, bandpass filtering and F-X deconvolution, eigenvector filtering, muting, pre-stack Kirchhoff depth migration and stacking was used to differentiate fluid-filled fracture reflections from source generated noise. The final stacked and pre-stack depth-migrated GPR sections provide high-resolution images of individual fractures (dipping 30-90°) in the surroundings (2-20 m for the 100 MHz antennas; 2-12 m for the 250 MHz antennas) of each borehole in a 2D plane projection that are of superior quality to those obtained from single-offset sections. Most fractures previously identified from hydraulic testing can be correlated to reflections in the single-hole data. Several previously unknown major near vertical fractures have also been identified away from the boreholes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining can be defined as the extraction of previously unknown and potentially useful information from large datasets. The main principle is to devise computer programs that run through databases and automatically seek deterministic patterns. It is applied in different fields of application, e.g., remote sensing, biometry, speech recognition, but has seldom been applied to forensic case data. The intrinsic difficulty related to the use of such data lies in its heterogeneity, which comes from the many different sources of information. The aim of this study is to highlight potential uses of pattern recognition that would provide relevant results from a criminal intelligence point of view. The role of data mining within a global crime analysis methodology is to detect all types of structures in a dataset. Once filtered and interpreted, those structures can point to previously unseen criminal activities. The interpretation of patterns for intelligence purposes is the final stage of the process. It allows the researcher to validate the whole methodology and to refine each step if necessary. An application to cutting agents found in illicit drug seizures was performed. A combinatorial approach was done, using the presence and the absence of products. Methods coming from the graph theory field were used to extract patterns in data constituted by links between products and place and date of seizure. A data mining process completed using graphing techniques is called ``graph mining''. Patterns were detected that had to be interpreted and compared with preliminary knowledge to establish their relevancy. The illicit drug profiling process is actually an intelligence process that uses preliminary illicit drug classes to classify new samples. Methods proposed in this study could be used \textit{a priori} to compare structures from preliminary and post-detection patterns. This new knowledge of a repeated structure may provide valuable complementary information to profiling and become a source of intelligence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of liquid-crystal panels for use in commercial equipment has been aimed at improving the pixel resolution and the display efficiency. These improvements have led to a reduction in the thickness of such devices, among other outcomes, that involves a loss in phase modulation. We propose a modification of the classical phase-only filter to permit displays in VGA liquid-crystal panels with a constant amplitude modulation and less than a 2¿(PI) phase modulation. The method was tested experimentally in an optical setup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal oscillations are an important aspect of EEG recordings. These oscillations are supposed to be involved in several cognitive mechanisms. For instance, oscillatory activity is considered a key component for the top-down control of perception. However, measuring this activity and its influence requires precise extraction of frequency components. This processing is not straightforward. Particularly, difficulties with extracting oscillations arise due to their time-varying characteristics. Moreover, when phase information is needed, it is of the utmost importance to extract narrow-band signals. This paper presents a novel method using adaptive filters for tracking and extracting these time-varying oscillations. This scheme is designed to maximize the oscillatory behavior at the output of the adaptive filter. It is then capable of tracking an oscillation and describing its temporal evolution even during low amplitude time segments. Moreover, this method can be extended in order to track several oscillations simultaneously and to use multiple signals. These two extensions are particularly relevant in the framework of EEG data processing, where oscillations are active at the same time in different frequency bands and signals are recorded with multiple sensors. The presented tracking scheme is first tested with synthetic signals in order to highlight its capabilities. Then it is applied to data recorded during a visual shape discrimination experiment for assessing its usefulness during EEG processing and in detecting functionally relevant changes. This method is an interesting additional processing step for providing alternative information compared to classical time-frequency analyses and for improving the detection and analysis of cross-frequency couplings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes the results of the research project investigating the use of advanced field data acquisition technologies for lowa transponation agencies. The objectives of the research project were to (1) research and evaluate current data acquisition technologies for field data collection, manipulation, and reporting; (2) identify the current field data collection approach and the interest level in applying current technologies within Iowa transportation agencies; and (3) summarize findings, prioritize technology needs, and provide recommendations regarding suitable applications for future development. A steering committee consisting oretate, city, and county transportation officials provided guidance during this project. Technologies considered in this study included (1) data storage (bar coding, radio frequency identification, touch buttons, magnetic stripes, and video logging); (2) data recognition (voice recognition and optical character recognition); (3) field referencing systems (global positioning systems [GPS] and geographic information systems [GIs]); (4) data transmission (radio frequency data communications and electronic data interchange); and (5) portable computers (pen-based computers). The literature review revealed that many of these technologies could have useful applications in the transponation industry. A survey was developed to explain current data collection methods and identify the interest in using advanced field data collection technologies. Surveys were sent out to county and city engineers and state representatives responsible for certain programs (e.g., maintenance management and construction management). Results showed that almost all field data are collected using manual approaches and are hand-carried to the office where they are either entered into a computer or manually stored. A lack of standardization was apparent for the type of software applications used by each agency--even the types of forms used to manually collect data differed by agency. Furthermore, interest in using advanced field data collection technologies depended upon the technology, program (e.g.. pavement or sign management), and agency type (e.g., state, city, or county). The state and larger cities and counties seemed to be interested in using several of the technologies, whereas smaller agencies appeared to have very little interest in using advanced techniques to capture data. A more thorough analysis of the survey results is provided in the report. Recommendations are made to enhance the use of advanced field data acquisition technologies in Iowa transportation agencies: (1) Appoint a statewide task group to coordinate the effort to automate field data collection and reporting within the Iowa transportation agencies. Subgroups representing the cities, counties, and state should be formed with oversight provided by the statewide task group. (2) Educate employees so that they become familiar with the various field data acquisition technologies.