974 resultados para Operational transconductance amplifier
Resumo:
A newly introduced inverse class-E power amplifier (PA) was designed, simulated, fabricated, and characterized. The PA operated at 2.26 GHz and delivered 20.4-dBm output power with peak drain efficiency (DE) of 65% and power gain of 12 dB. Broadband performance was achieved across a 300-Mitz bandwidth with DE of better than 50% and 1-dB output-power flatness. The concept of enhanced injection predistortion with a capability to selectively suppress unwanted sub-frequency components and hence suitable for memory effects minimization is described coupled with a new technique that facilitates an accurate measurement of the phase of the third-order intermodulation (IM3) products. A robust iterative computational algorithm proposed in this paper dispenses with the need for manual tuning of amplitude and phase of the IM3 injected signals as commonly employed in the previous publications. The constructed inverse class-E PA was subjected to a nonconstant envelope 16 quadrature amplitude modulation signal and was linearized using combined lookup table (LUT) and enhanced injection technique from which superior properties from each technique can be simultaneously adopted. The proposed method resulted in 0.7% measured error vector magnitude (in rms) and 34-dB adjacent channel leakage power ratio improvement, which was 10 dB better than that achieved using the LUT predistortion alone.
Resumo:
The potential of employing a millimetre-wave MMIC reflection amplifier as a building block for a retrodirective reflectarray is investigated. With this in mind the phase conjugating behaviour of the device is experimentally quantified at 21 GHz.
Resumo:
A recently introduced power-combining scheme for a Class-E amplifier is, for the first time, experimentally validated in this paper. A small value choke of 2.2 nH was used to substitute for the massive dc-feed inductance required in the classic Class-E circuit. The power-combining amplifier presented, which operates from a 3.2-V dc supply voltage, is shown to be able to deliver a 24-dBm output power and a 9.5-dB gain, with 64% drain efficiency and 57% power-added efficiency at 2.4 GHz. The power amplifier exhibits a 350-MHz bandwidth within which a drain efficiency that is better than 60% and an output power that is higher than 22 dBm were measured. In addition, by adopting three-harmonic termination strategy, excellent second-and third-harmonic suppression levels of 50 and 46 dBc, respectively, were obtained. The complete design cycle from analysis through fabrication to characterization is explained. © 2010 IEEE.
Resumo:
Following automation of lighthouses around the coastline of Ireland, reports of accelerated deterioration of interior granite stonework have increased significantly with an associated deterioration in the historic structure and rise in related maintenance costs. Decay of granite stone- work primarily occurs through granular disintegration with the effective grusification of granite surfaces. A decay gradient exists within the towers whereby the condition of granite in the lower levels is much worse than elsewhere. The lower tower levels are also regions with highest rela- tive humidity values and greatest salt concentrations. Data indicate that post-automation decay may have been trig- gered by a change in micro-environmental conditions within the towers associated with increased episodes of condensation on stone surfaces. This in turn appears to have facilitated deposition and accumulation of hygro- scopic salts (e.g. NaCl) giving rise to widespread evidence of deliquescence in the lower tower levels. Evidence indicates that the main factors contributing to accelerated deterioration of interior granite stonework are changes in micro-environmental conditions, salt weathering, chemical weathering through the corrosive effect of strongly alkaline conditions on alumino-silicate minerals within the granite and finally, the mica-rich characteristics of the granite itself which increases its structural and chemical susceptibility to subaerial weathering processes by creating points of weakness within the granite. This case study demonstrates how seemingly minor changes in micro-environmental conditions can unintentionally trigger the rapid and extensive deterioration of a previously stable rock type and threaten the long-term future of nationally iconic opera- tional historic structures.
Resumo:
A novel Class-E power amplifier (PA) topology with transmission-line load network is presented in this brief. When compared with the classic Class-E topology, the new circuit can increase the maximum operating frequency up to 50% higher without trading the other Class-E figures of merit. Neither quarterwave line/massive radio-frequency choke for collector/drain biasing nor additional fundamental-frequency output matching circuit are needed in the proposed PA, thus resulting in a compact design. Closed-form formulations are derived and verified by simulations with practical design limitations carefully taken into consideration and good agreement achieved.
Resumo:
A beam of amplified spontaneous emission at 23.2/23.6 nm from a GeXXIII XUV laser has been injected into a separate amplifier plasma and the astigmatic aberrations introduced by plasma density gradients in the amplifier have been estimated from analysis of images of the amplified beam.
Resumo:
The XUV lasing output from one germanium slab target has been efficiently coupled into, and further amplified in, a second plasma produced by irradiation of a similar target from the opposite direction. The operation of such a double target was shown to be strongly dependent on the distance by which the two target surfaces were displaced. The line brightness peaked for a surface displacement of approximately 200-mu-m and it was observed that the pointing direction of one output beam could be controlled by the surface separation in an asymmetric geometry. Gain length products of approximately 16 with estimated output powers close to the megawatt level were achieved on both the 23.2 and 23.6 nm J=2-1 transitions for an optimised target configuration. Maximum effective coupling efficiencies of the individual outputs from double targets, comprising 2.2 and 1.4 cm length components, approached 100% for beams propagating from the shorter to the longer target.