1000 resultados para ORAL IMPLANT
Resumo:
OBJECTIVES The aim of this case series was to introduce a complete digital workflow for the production of monolithic implant crowns. MATERIAL AND METHODS Six patients were treated with implant-supported crowns made of resin nano ceramic (RNC). Starting with an intraoral optical scan (IOS), and following a CAD/CAM process, the monolithic crowns were bonded either to a novel prefabricated titanium abutment base (group A) or to a CAD/CAM-generated individualized titanium abutment (group B) in premolar or molar sites on a soft tissue level dental implant. Economic analyses included clinical and laboratory steps. An esthetic evaluation was performed to compare the two abutment-crown combinations. RESULTS None of the digitally constructed RNC crowns required any clinical adaptation. Overall mean work time calculations revealed obvious differences for group A (65.3 min) compared with group B (86.5 min). Esthetic analysis demonstrated a more favorable outcome for the prefabricated bonding bases. CONCLUSIONS Prefabricated or individualized abutments on monolithic RNC crowns using CAD/CAM technology in a model-free workflow seem to provide a feasible and streamlined treatment approach for single-edentulous space rehabilitation in the posterior region. However, RNC as full-contour material has to be considered experimental, and further large-scale clinical investigations with long-term follow-up observation are necessary.
Resumo:
PURPOSE To assess the survival outcomes and reported complications of screw- and cement-retained fixed reconstructions supported on dental implants. MATERIALS AND METHODS A Medline (PubMed), Embase, and Cochrane electronic database search from 2000 to September 2012 using MeSH and free-text terms was conducted. Selected inclusion and exclusion criteria guided the search. All studies were first reviewed by abstract and subsequently by full-text reading by two examiners independently. Data were extracted by two examiners and statistically analyzed using a random effects Poisson regression. RESULTS From 4,324 abstracts, 321 full-text articles were reviewed. Seventy-three articles were found to qualify for inclusion. Five-year survival rates of 96.03% (95% confidence interval [CI]: 93.85% to 97.43%) and 95.55% (95% CI: 92.96% to 97.19%) were calculated for cemented and screw-retained reconstructions, respectively (P = .69). Comparison of cement and screw retention showed no difference when grouped as single crowns (I-SC) (P = .10) or fixed partial dentures (I-FDP) (P = .49). The 5-year survival rate for screw-retained full-arch reconstructions was 96.71% (95% CI: 93.66% to 98.31). All-ceramic reconstruction material exhibited a significantly higher failure rate than porcelain-fused-to-metal (PFM) in cemented reconstructions (P = .01) but not when comparing screw-retained reconstructions (P = .66). Technical and biologic complications demonstrating a statistically significant difference included loss of retention (P ≤ .01), abutment loosening (P ≤ .01), porcelain fracture and/or chipping (P = .02), presence of fistula/suppuration (P ≤ .001), total technical events (P = .03), and total biologic events (P = .02). CONCLUSIONS Although no statistical difference was found between cement- and screw-retained reconstructions for survival or failure rates, screw-retained reconstructions exhibited fewer technical and biologic complications overall. There were no statistically significant differences between the failure rates of the different reconstruction types (I-SCs, I-FDPs, full-arch I-FDPs) or abutment materials (titanium, gold, ceramic). The failure rate of cemented reconstructions was not influenced by the choice of a specific cement, though cement type did influence loss of retention.
Resumo:
OBJECTIVE The Short Communication presents a clinical case in which a novel procedure--the "Individualized Scanbody Technique" (IST)--was applied, starting with an intraoral digital impression and using CAD/CAM process for fabrication of ceramic reconstructions in bone level implants. MATERIAL AND METHODS A standardized scanbody was individually modified in accordance with the created emergence profile of the provisional implant-supported restoration. Due to the specific adaptation of the scanbody, the conditioned supra-implant soft tissue complex was stabilized for the intraoral optical scan process. Then, the implant platform position and the supra-implant mucosa outline were transferred into the three-dimensional data set with a digital impression system. Within the technical workflow, the ZrO2 -implant-abutment substructure could be designed virtually with predictable margins of the supra-implant mucosa. RESULTS After finalization of the 1-piece screw-retained full ceramic implant crown, the restoration demonstrated an appealing treatment outcome with harmonious soft tissue architecture. CONCLUSIONS The IST facilitates a simple and fast approach for a supra-implant mucosal outline transfer in the digital workflow. Moreover, the IST closes the interfaces in the full digital pathway.
Resumo:
OBJECTIVE To analyze the precision of fit of implant-supported screw-retained computer-aided-designed and computer-aided-manufactured (CAD/CAM) zirconium dioxide (ZrO) frameworks. MATERIALS AND METHODS Computer-aided-designed and computer-aided-manufactured ZrO frameworks (NobelProcera) for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI positions 15, 13, 11, 21, 23, 25) were fabricated using a laser (ZrO-L, N = 6) and a mechanical scanner (ZrO-M, N = 5) for digitizing the implant platform and the cuspid-supporting framework resin pattern. Laser-scanned CAD/CAM titanium (TIT-L, N = 6) and cast CoCrW-alloy frameworks (Cast, N = 5) fabricated on the same model and designed similar to the ZrO frameworks were the control. The one-screw test (implant 25 screw-retained) was applied to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from approximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS No statistically significant pairwise difference was observed between the relative effects of vertical microgap between ZrO-L (median 14 μm; 95% CI 10-26 μm), ZrO-M (18 μm; 12-27 μm) and TIT-L (15 μm; 6-18 μm), whereas the values of Cast (236 μm; 181-301 μm) were significantly higher (P < 0.001) than the three CAD/CAM groups. A monotonous trend of increasing values from implant 23 to 15 was observed in all groups (ZrO-L, ZrO-M and Cast P < 0.001, TIT-L P = 0.044). CONCLUSIONS Optical and tactile scanners with CAD/CAM technology allow for the fabrication of highly accurate long-span screw-retained ZrO implant-reconstructions. Titanium frameworks showed the most consistent precision. Fit of the cast alloy frameworks was clinically inacceptable.
Resumo:
PURPOSE To evaluate and compare crestal bone level changes and peri-implant status of implant-supported reconstructions in edentulous and partially dentate patients after a minimum of 5 years of loading. MATERIALS AND METHODS All patients who received a self-tapping implant with a microstructured surface during the years 2003 and 2004 at the Department of Prosthodontics, University of Bern, were included in this study. The implant restorations comprised fixed and removable prostheses for partially and completely edentulous patients. Radiographs were taken immediately after surgery, at impression making, and 1 and 5 years after loading. Crestal bone level (BIC) was measured from the implant shoulder to the first bone contact, and changes were calculated over time (ΔBIC). The associations between pocket depth, bleeding on probing (BOP), and ΔBIC were assessed. RESULTS Sixty-one implants were placed in 20 patients (mean age, 62 ± 7 years). At the 5-year follow-up, 19 patients with 58 implants were available. Implant survival was 98.4% (one early failure; one patient died). The average ΔBIC between surgery and 5-year follow-up was 1.5 ± 0.9 mm and 1.1 ± 0.6 mm for edentulous and partially dentate patients, respectively. Most bone resorption (50%, 0.7 mm) occurred during the first 3 months (osseointegration) and within the first year of loading (21%, 0.3 mm). Mean annual bone loss during the 5 years of loading was < 0.12 mm. Mean pocket depth was 2.6 ± 0.7 mm. Seventeen percent of the implant sites displayed BOP; the frequency was significantly higher in women. None of the variables were significantly associated with crestal bone loss. CONCLUSION Crestal bone loss after 5 years was within the normal range, without a significant difference between edentulous and partially dentate patients. In the short term, this implant system can be used successfully for various prosthetic indications.
Resumo:
BACKGROUND AND AIM So far there is little evidence from randomised clinical trials (RCT) or systematic reviews on the preferred or best number of implants to be used for the support of a fixed prosthesis in the edentulous maxilla or mandible, and no consensus has been reached. Therefore, we reviewed articles published in the past 30 years that reported on treatment outcomes for implant-supported fixed prostheses, including survival of implants and survival of prostheses after a minimum observation period of 1 year. MATERIAL AND METHODS MEDLINE and EMBASE were searched to identify eligible studies. Short and long-term clinical studies were included with prospective and retrospective study designs to see if relevant information could be obtained on the number of implants related to the prosthetic technique. Articles reporting on implant placement combined with advanced surgical techniques such as sinus floor elevation (SFE) or extensive grafting were excluded. Two reviewers extracted the data independently. RESULTS A primary search was broken down to 222 articles. Out of these, 29 studies comprising 26 datasets fulfilled the inclusion criteria. From all studies, the number of planned and placed implants was available. With two exceptions, no RCTs were found, and these two studies did not compare different numbers of implants per prosthesis. Eight studies were retrospective; all the others were prospective. Fourteen studies calculated cumulative survival rates for 5 and more years. From these data, the average survival rate was between 90% and 100%. The analysis of the selected articles revealed a clear tendency to plan 4 to 6 implants per prosthesis. For supporting a cross-arch fixed prosthesis in the maxilla, the variation is slightly greater. CONCLUSIONS In spite of a dispersion of results, similar outcomes are reported with regard to survival and number of implants per jaw. Since the 1990s, it was proven that there is no need to install as many implants as possible in the available jawbone. The overwhelming majority of articles dealing with standard surgical procedures to rehabilitate edentulous jaws uses 4 to 6 implants.
Resumo:
OBJECTIVE The aim of the present prospective clinical study was to compare patient-reported outcomes for maxillary conventional dentures and maxillary implant-supported dentures. MATERIAL AND METHODS Twenty-one patients (6 women and 15 men) being edentulous in the maxilla and encountering problems with their existing dentures were included. Twelve patients (4 women and 8 men) received a new set of conventional dentures, due to insufficient dentures. In nine patients (2 women and 7 men), the existing dentures were adjusted by means of relining or rebasing. All patients received implant-supported dentures on two retentive anchors. In total, 42 implants were inserted in the anterior maxilla. The participants rated their satisfaction on their existing conventional dentures, 2 months after insertion of new conventional dentures and 2 months after insertion of implant-supported dentures. Thereby, patients responded to questionnaires capturing the oral health impact profile (OHIP) using visual analog scales. Seven domains (functional limitation, physical pain, psychological discomfort, physical, psychological and social disability and handicap) were assessed. Higher scores implied poorer patient satisfaction. In addition, the questionnaire involved the evaluation of cleaning ability, general satisfaction, speech, comfort, esthetics, stability, and chewing ability. Higher scores implied higher patient satisfaction. RESULTS Patient satisfaction significantly increased for implant-supported dentures compared with old dentures in all seven OHIP subgroups, as well as for cleaning ability, general satisfaction, ability to speak, comfort, esthetics, and stability (P < 0.05). The comparison of new conventional dentures and implant-supported dentures revealed a statistically significantly increased satisfaction for functional limitation (difference of 33.2 mm), psychological discomfort (difference of 36.7 mm), physical disability (difference of 36.3 mm), and social disability (difference of 23.5 mm), (P < 0.05). Additionally, general satisfaction, chewing ability, speech, and stability significantly improved in implant-supported dentures (P < 0.05). CONCLUSIONS Within the limits of this study, maxillary dentures retained by two implants provided some significant short-term improvements over conventional dentures in oral- and health-related quality of life.
Resumo:
AIMS Over the past decades, the placement of dental implants has become a routine procedure in the oral rehabilitation of fully and partially edentulous patients. However, the number of patients/implants affected by peri-implant diseases is increasing. As there are--in contrast to periodontitis--at present no established and predictable concepts for the treatment of peri-implantitis, primary prevention is of key importance. The management of peri-implant mucositis is considered as a preventive measure for the onset of peri-implantitis. Therefore, the remit of this working group was to assess the prevalence of peri-implant diseases, as well as risks for peri-implant mucositis and to evaluate measures for the management of peri-implant mucositis. METHODS Discussions were informed by four systematic reviews on the current epidemiology of peri-implant diseases, on potential risks contributing to the development of peri-implant mucositis, and on the effect of patient and of professionally administered measures to manage peri-implant mucositis. This consensus report is based on the outcomes of these systematic reviews and on the expert opinion of the participants. RESULTS Key findings included: (i) meta-analysis estimated a weighted mean prevalence for peri-implant mucositis of 43% (CI: 32-54%) and for peri-implantitis of 22% (CI: 14-30%); (ii) bleeding on probing is considered as key clinical measure to distinguish between peri-implant health and disease; (iii) lack of regular supportive therapy in patients with peri-implant mucositis was associated with increased risk for onset of peri-implantitis; (iv) whereas plaque accumulation has been established as aetiological factor, smoking was identified as modifiable patient-related and excess cement as local risk indicator for the development of peri-implant mucositis; (v) patient-administered mechanical plaque control (with manual or powered toothbrushes) has been shown to be an effective preventive measure; (vi) professional intervention comprising oral hygiene instructions and mechanical debridement revealed a reduction in clinical signs of inflammation; (vii) adjunctive measures (antiseptics, local and systemic antibiotics, air-abrasive devices) were not found to improve the efficacy of professionally administered plaque removal in reducing clinical signs of inflammation. CONCLUSIONS Consensus was reached on recommendations for patients with dental implants and oral health care professionals with regard to the efficacy of measures to manage peri-implant mucositis. It was particularly emphasized that implant placement and prosthetic reconstructions need to allow proper personal cleaning, diagnosis by probing and professional plaque removal.
Resumo:
Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.
Resumo:
OBJECTIVES To objectively determine the difference in colour between the peri-implant soft tissue at titanium and zirconia abutments. MATERIALS AND METHODS Eleven patients, each with two contralaterally inserted osteointegrated dental implants, were included in this study. The implants were restored either with titanium abutments and porcelain-fused-to-metal crowns, or with zirconia abutments and ceramic crowns. Prior and after crown cementation, multi-spectral images of the peri-implant soft tissues and the gingiva of the neighbouring teeth were taken with a colorimeter. The colour parameters L*, a*, b*, c* and the colour differences ΔE were calculated. Descriptive statistics, including non-parametric tests and correlation coefficients, were used for statistical analyses of the data. RESULTS Compared to the gingiva of the neighbouring teeth, the peri-implant soft tissue around titanium and zirconia (test group), showed distinguishable ΔE both before and after crown cementation. Colour differences around titanium were statistically significant different (P = 0.01) only at 1 mm prior to crown cementation compared to zirconia. Compared to the gingiva of the neighbouring teeth, statistically significant (P < 0.01) differences were found for all colour parameter, either before or after crown cementation for both abutments; more significant differences were registered for titanium abutments. Tissue thickness correlated positively with c*-values for titanium at 1 mm and 2 mm from the gingival margin. CONCLUSIONS Within their limits, the present data indicate that: (i) The peri-implant soft tissue around titanium and zirconia showed colour differences when compared to the soft tissue around natural teeth, and (ii) the peri-implant soft tissue around zirconia demonstrated a better colour match to the soft tissue at natural teeth than titanium.
Resumo:
PURPOSE The objective of this study was to assess the risk of bias of randomized controlled trials (RCTs) published in prosthodontic and implant dentistry journals. MATERIALS AND METHODS The last 30 issues of 9 journals in the field of prosthodontic and implant dentistry (Clinical Implant Dentistry and Related Research, Clinical Oral Implants Research, Implant Dentistry, International Journal of Oral & Maxillofacial Implants, International Journal of Periodontics and Restorative Dentistry, International Journal of Prosthodontics, Journal of Dentistry, Journal of Oral Rehabilitation, and Journal of Prosthetic Dentistry) were hand-searched for RCTs. Risk of bias was assessed using the Cochrane Collaboration's risk of bias tool and analyzed descriptively. RESULTS From the 3,667 articles screened, a total of 147 RCTs were identified and included. The number of published RCTs increased with time. The overall distribution of a high risk of bias assessment varied across the domains of the Cochrane risk of bias tool: 8% for random sequence generation, 18% for allocation concealment, 41% for masking, 47% for blinding of outcome assessment, 7% for incomplete outcome data, 12% for selective reporting, and 41% for other biases. CONCLUSION The distribution of high risk of bias for RCTs published in the selected prosthodontic and implant dentistry journals varied among journals and ranged from 8% to 47%, which can be considered as substantial.
Resumo:
PURPOSE To identify the influence of fixed prosthesis type on biologic and technical complication rates in the context of screw versus cement retention. Furthermore, a multivariate analysis was conducted to determine which factors, when considered together, influence the complication and failure rates of fixed implant-supported prostheses. MATERIALS AND METHODS Electronic searches of MEDLINE (PubMed), EMBASE, and the Cochrane Library were conducted. Selected inclusion and exclusion criteria were used to limit the search. Data were analyzed statistically with simple and multivariate random-effects Poisson regressions. RESULTS Seventy-three articles qualified for inclusion in the study. Screw-retained prostheses showed a tendency toward and significantly more technical complications than cemented prostheses with single crowns and fixed partial prostheses, respectively. Resin chipping and ceramic veneer chipping had high mean event rates, at 10.04 and 8.95 per 100 years, respectively, for full-arch screwed prostheses. For "all fixed prostheses" (prosthesis type not reported or not known), significantly fewer biologic and technical complications were seen with screw retention. Multivariate analysis revealed a significantly greater incidence of technical complications with cemented prostheses. Full-arch prostheses, cantilevered prostheses, and "all fixed prostheses" had significantly higher complication rates than single crowns. A significantly greater incidence of technical and biologic complications was seen with cemented prostheses. CONCLUSION Screw-retained fixed partial prostheses demonstrated a significantly higher rate of technical complications and screw-retained full-arch prostheses demonstrated a notably high rate of veneer chipping. When "all fixed prostheses" were considered, significantly higher rates of technical and biologic complications were seen for cement-retained prostheses. Multivariate Poisson regression analysis failed to show a significant difference between screw- and cement-retained prostheses with respect to the incidence of failure but demonstrated a higher rate of technical and biologic complications for cement-retained prostheses. The incidence of technical complications was more dependent upon prosthesis and retention type than prosthesis or abutment material.
Resumo:
PURPOSE The objective of this study was to evaluate stiffness, strength, and failure modes of monolithic crowns produced using computer-aided design/computer-assisted manufacture, which are connected to diverse titanium and zirconia abutments on an implant system with tapered, internal connections. MATERIALS AND METHODS Twenty monolithic lithium disilicate (LS2) crowns were constructed and loaded on bone level-type implants in a universal testing machine under quasistatic conditions according to DIN ISO 14801. Comparative analysis included a 2 × 2 format: prefabricated titanium abutments using proprietary bonding bases (group A) vs nonproprietary bonding bases (group B), and customized zirconia abutments using proprietary Straumann CARES (group C) vs nonproprietary Astra Atlantis (group D) material. Stiffness and strength were assessed and calculated statistically with the Wilcoxon rank sum test. Cross-sections of each tested group were inspected microscopically. RESULTS Loaded LS2 crowns, implants, and abutment screws in all tested specimens (groups A, B, C, and D) did not show any visible fractures. For an analysis of titanium abutments (groups A and B), stiffness and strength showed equally high stability. In contrast, proprietary and nonproprietary customized zirconia abutments exhibited statistically significant differences with a mean strength of 366 N (Astra) and 541 N (CARES) (P < .05); as well as a mean stiffness of 884 N/mm (Astra) and 1,751 N/mm (CARES) (P < .05), respectively. Microscopic cross-sections revealed cracks in all zirconia abutments (groups C and D) below the implant shoulder. CONCLUSION Depending on the abutment design, prefabricated titanium abutment and proprietary customized zirconia implant-abutment connections in conjunction with monolithic LS2 crowns had the best results in this laboratory investigation.
Resumo:
PURPOSE To compare time-efficiency in the production of implant crowns using a digital workflow versus the conventional pathway. MATERIALS AND METHODS This prospective clinical study used a crossover design that included 20 study participants receiving single-tooth replacements in posterior sites. Each patient received a customized titanium abutment plus a computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia suprastructure (for those in the test group, using digital workflow) and a standardized titanium abutment plus a porcelain-fused-to-metal crown (for those in the control group, using a conventional pathway). The start of the implant prosthetic treatment was established as the baseline. Time-efficiency analysis was defined as the primary outcome, and was measured for every single clinical and laboratory work step in minutes. Statistical analysis was calculated with the Wilcoxon rank sum test. RESULTS All crowns could be provided within two clinical appointments, independent of the manufacturing process. The mean total production time, as the sum of clinical plus laboratory work steps, was significantly different. The mean ± standard deviation (SD) time was 185.4 ± 17.9 minutes for the digital workflow process and 223.0 ± 26.2 minutes for the conventional pathway (P = .0001). Therefore, digital processing for overall treatment was 16% faster. Detailed analysis for the clinical treatment revealed a significantly reduced mean ± SD chair time of 27.3 ± 3.4 minutes for the test group compared with 33.2 ± 4.9 minutes for the control group (P = .0001). Similar results were found for the mean laboratory work time, with a significant decrease of 158.1 ± 17.2 minutes for the test group vs 189.8 ± 25.3 minutes for the control group (P = .0001). CONCLUSION Only a few studies have investigated efficiency parameters of digital workflows compared with conventional pathways in implant dental medicine. This investigation shows that the digital workflow seems to be more time-efficient than the established conventional production pathway for fixed implant-supported crowns. Both clinical chair time and laboratory manufacturing steps could be effectively shortened with the digital process of intraoral scanning plus CAD/CAM technology.