1000 resultados para OPTIMAL CLONING
Resumo:
We consider discrete-time versions of two classical problems in the optimal control of admission to a queueing system: i) optimal routing of arrivals to two parallel queues and ii) optimal acceptance/rejection of arrivals to a single queue. We extend the formulation of these problems to permit a k step delay in the observation of the queue lengths by the controller. For geometric inter-arrival times and geometric service times the problems are formulated as controlled Markov chains with expected total discounted cost as the minimization objective. For problem i) we show that when k = 1, the optimal policy is to allocate an arrival to the queue with the smaller expected queue length (JSEQ: Join the Shortest Expected Queue). We also show that for this problem, for k greater than or equal to 2, JSEQ is not optimal. For problem ii) we show that when k = 1, the optimal policy is a threshold policy. There are, however, two thresholds m(0) greater than or equal to m(1) > 0, such that mo is used when the previous action was to reject, and mi is used when the previous action was to accept.
Resumo:
We consider the effect of subdividing the potential barrier along the reaction coordinate on Kramer's escape rate for a model potential, Using the known supersymmetric potential approach, we show the existence of an optimal number of subdivisions that maximizes the rate, We cast the problem as a mean first passage time problem of a biased random walker and obtain equivalent results, We briefly summarize the results of our investigation on the increase in the escape rate by placing a blow-torch in the unstable part of one of the potential wells. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We address the optimal control problem of a very general stochastic hybrid system with both autonomous and impulsive jumps. The planning horizon is infinite and we use the discounted-cost criterion for performance evaluation. Under certain assumptions, we show the existence of an optimal control. We then derive the quasivariational inequalities satisfied by the value function and establish well-posedness. Finally, we prove the usual verification theorem of dynamic programming.
Resumo:
We provide a filterbank precoding framework (FBP) for frequency selective channels using the minimum mean squared error (MMSE) criterion. The design obviates the need for introducing a guard interval between successive blocks, and hence can achieve the maximum possible bandwidth efficiency. This is especially useful in cases where the channel is of a high order. We treat both the presence and the absence of channel knowledge at the transmitter. In the former case, we obtain the jointly optimal precoder-equalizer pair of the specified order. In the latter case, we use a zero padding precoder, and obtain the MMSE equalizer. No restriction on the dimension or nature of the channel matrix is imposed. Simulation results indicate that the filterbank approach outperforms block based methods like OFDM and eigenmode precoding.
Resumo:
In this paper, we study the problem of wireless sensor network design by deploying a minimum number of additional relay nodes (to minimize network design cost) at a subset of given potential relay locationsin order to convey the data from already existing sensor nodes (hereafter called source nodes) to a Base Station within a certain specified mean delay bound. We formulate this problem in two different ways, and show that the problem is NP-Hard. For a problem in which the number of existing sensor nodes and potential relay locations is n, we propose an O(n) approximation algorithm of polynomial time complexity. Results show that the algorithm performs efficiently (in over 90% of the tested scenarios, it gave solutions that were either optimal or exceeding optimal just by one relay) in various randomly generated network scenarios.
Resumo:
Timer-based mechanisms are often used in several wireless systems to help a given (sink) node select the best helper node among many available nodes. Specifically, a node transmits a packet when its timer expires, and the timer value is a function of its local suitability metric. In practice, the best node gets selected successfully only if no other node's timer expires within a `vulnerability' window after its timer expiry. In this paper, we provide a complete closed-form characterization of the optimal metric-to-timer mapping that maximizes the probability of success for any probability distribution function of the metric. The optimal scheme is scalable, distributed, and much better than the popular inverse metric timer mapping. We also develop an asymptotic characterization of the optimal scheme that is elegant and insightful, and accurate even for a small number of nodes.
Resumo:
We study the trade-off between delivery delay and energy consumption in delay tolerant mobile wireless networks that use two-hop relaying. The source may not have perfect knowledge of the delivery status at every instant. We formulate the problem as a stochastic control problem with partial information, and study structural properties of the optimal policy. We also propose a simple suboptimal policy. We then compare the performance of the suboptimal policy against that of the optimal control with perfect information. These are bounds on the performance of the proposed policy with partial information. Several other related open loop policies are also compared with these bounds.
Resumo:
In this paper, we present a belief propagation (BP) based equalizer for ultrawideband (UWB) multiple-input multiple-output (MIMO) inter-symbol interference (ISI) channels characterized by severe delay spreads. We employ a Markov random field (MRF) graphical model of the system on which we carry out message passing. The proposed BP equalizer is shown to perform increasingly closer to optimal performance for increasing number of multipath components (MPC) at a much lesser complexity than that of the optimum equalizer. The proposed equalizer performs close to within 0.25 dB of SISO AWGN performance at 10-3 bit error rate on a severely delay-spread MIMO-ISI channel with 20 equal-energy MPCs. We point out that, although MIMO/UWB systems are characterized by fully/densely connected graphical models, the following two proposed features are instrumental in achieving near-optimal performance for large number of MPCs at low complexities: i) use of pairwise compatibility functions in densely connected MRFs, and ii) use of damping of messages.
Resumo:
We develop an optimal, distributed, and low feedback timer-based selection scheme to enable next generation rate-adaptive wireless systems to exploit multi-user diversity. In our scheme, each user sets a timer depending on its signal to noise ratio (SNR) and transmits a small packet to identify itself when its timer expires. When the SNR-to-timer mapping is monotone non-decreasing, timers of users with better SNRs expire earlier. Thus, the base station (BS) simply selects the first user whose timer expiry it can detect, and transmits data to it at as high a rate as reliably possible. However, timers that expire too close to one another cannot be detected by the BS due to collisions. We characterize in detail the structure of the SNR-to-timer mapping that optimally handles these collisions to maximize the average data rate. We prove that the optimal timer values take only a discrete set of values, and that the rate adaptation policy strongly influences the optimal scheme's structure. The optimal average rate is very close to that of ideal selection in which the BS always selects highest rate user, and is much higher than that of the popular, but ad hoc, timer schemes considered in the literature.
Resumo:
Reduction of carbon emissions is of paramount importance in the context of global warming. Countries and global companies are now engaged in understanding systematic ways of achieving well defined emission targets. In fact, carbon credits have become significant and strategic instruments of finance for countries and global companies. In this paper, we formulate and suggest a solution to the carbon allocation problem, which involves determining a cost minimizing allocation of carbon credits among different emitting agents. We address this challenge in the context of a global company which is faced with the challenge of determining an allocation of carbon credit caps among its divisions in a cost effective way. The problem is formulated as a reverse auction problem where the company plays the role of a buyer or carbon planning authority and the different divisions within the company are the emitting agents that specify cost curves for carbon credit reductions. Two natural variants of the problem: (a) with unlimited budget and (b) with limited budget are considered. Suitable assumptions are made on the cost curves and in each of the two cases we show that the resulting problem formulation is a knapsack problem that can be solved optimally using a greedy heuristic. The solution of the allocation problem provides critical decision support to global companies engaged seriously in green programs.
Resumo:
Large-grain synchronous dataflow graphs or multi-rate graphs have the distinct feature that the nodes of the dataflow graph fire at different rates. Such multi-rate large-grain dataflow graphs have been widely regarded as a powerful programming model for DSP applications. In this paper we propose a method to minimize buffer storage requirement in constructing rate-optimal compile-time (MBRO) schedules for multi-rate dataflow graphs. We demonstrate that the constraints to minimize buffer storage while executing at the optimal computation rate (i.e. the maximum possible computation rate without storage constraints) can be formulated as a unified linear programming problem in our framework. A novel feature of our method is that in constructing the rate-optimal schedule, it directly minimizes the memory requirement by choosing the schedule time of nodes appropriately. Lastly, a new circular-arc interval graph coloring algorithm has been proposed to further reduce the memory requirement by allowing buffer sharing among the arcs of the multi-rate dataflow graph. We have constructed an experimental testbed which implements our MBRO scheduling algorithm as well as (i) the widely used periodic admissible parallel schedules (also known as block schedules) proposed by Lee and Messerschmitt (IEEE Transactions on Computers, vol. 36, no. 1, 1987, pp. 24-35), (ii) the optimal scheduling buffer allocation (OSBA) algorithm of Ning and Gao (Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, SC, Jan. 10-13, 1993, pp. 29-42), and (iii) the multi-rate software pipelining (MRSP) algorithm (Govindarajan and Gao, in Proceedings of the 1993 International Conference on Application Specific Array Processors, Venice, Italy, Oct. 25-27, 1993, pp. 77-88). Schedules generated for a number of random dataflow graphs and for a set of DSP application programs using the different scheduling methods are compared. The experimental results have demonstrated a significant improvement (10-20%) in buffer requirements for the MBRO schedules compared to the schedules generated by the other three methods, without sacrificing the computation rate. The MBRO method also gives a 20% average improvement in computation rate compared to Lee's Block scheduling method.
Resumo:
A homologue of the segment polarity gene Cubitus interruptus from Bombyx Mori, (BmCi) has been cloned and characterized. This region harbouring Zn2+ finger motif is highly conserved across species. In B. Mori, BmCi RNA expression was first detected at stage 6 of embryogenesis, which reached maximum levels at stage 21C and was maintained until larval hatching. The segmentally reiterated striped pattern of transcript distribution in stage 21C embryos was in conformity with its predicted segment polarity nature. BmCi was expressed in the fore- and hind-wing discs, ovaries, testes and gut during fifth larval intermolt, reminiscent of its expression domains in Drosophila. Besides, BmCi expression was seen in the. anterior part of the middle silkglands in late embryonic stages, and this pattern was maintained during larval development. The transition from third to fourth and fifth larval intermolts was accompanied by an increase in the transcript levels in the middle silkglands. Our results demonstrate the presence of a novel expression domain for Ci in Bombyx. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
This paper presents the capability of the neural networks as a computational tool for solving constrained optimization problem, arising in routing algorithms for the present day communication networks. The application of neural networks in the optimum routing problem, in case of packet switched computer networks, where the goal is to minimize the average delays in the communication have been addressed. The effectiveness of neural network is shown by the results of simulation of a neural design to solve the shortest path problem. Simulation model of neural network is shown to be utilized in an optimum routing algorithm known as flow deviation algorithm. It is also shown that the model will enable the routing algorithm to be implemented in real time and also to be adaptive to changes in link costs and network topology. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Due to increasing trend of intensive rice cultivation in a coastal river basin, crop planning and groundwater management are imperative for the sustainable agriculture. For effective management, two models have been developed viz. groundwater balance model and optimum cropping and groundwater management model to determine optimum cropping pattern and groundwater allocation from private and government tubewells according to different soil types (saline and non-saline), type of agriculture (rainfed and irrigated) and seasons (monsoon and winter). A groundwater balance model has been developed considering mass balance approach. The components of the groundwater balance considered are recharge from rainfall, irrigated rice and non-rice fields, base flow from rivers and seepage flow from surface drains. In the second phase, a linear programming optimization model is developed for optimal cropping and groundwater management for maximizing the economic returns. The models developed were applied to a portion of coastal river basin in Orissa State, India and optimal cropping pattern for various scenarios of river flow and groundwater availability was obtained.
Resumo:
Feature extraction in bilingual OCR is handicapped by the increase in the number of classes or characters to be handled. This is evident in the case of Indian languages whose alphabet set is large. It is expected that the complexity of the feature extraction process increases with the number of classes. Though the determination of the best set of features that could be used cannot be ascertained through any quantitative measures, the characteristics of the scripts can help decide on the feature extraction procedure. This paper describes a hierarchical feature extraction scheme for recognition of printed bilingual (Tamil and Roman) text. The scheme divides the combined alphabet set of both the scripts into subsets by the extraction of certain spatial and structural features. Three features viz geometric moments, DCT based features and Wavelet transform based features are extracted from the grouped symbols and a linear transformation is performed on them for the purpose of efficient representation in the feature space. The transformation is obtained by the maximization of certain criterion functions. Three techniques : Principal component analysis, maximization of Fisher's ratio and maximization of divergence measure have been employed to estimate the transformation matrix. It has been observed that the proposed hierarchical scheme allows for easier handling of the alphabets and there is an appreciable rise in the recognition accuracy as a result of the transformations.